Федеральное государственное автономное образовательное учреждение высшего образования «Казанский (Приволжский) федеральный университет»

Институт органической и физической химии им А.Е. Арбузова – обособленное структурное подразделение Федерального государственного бюджетного учреждения науки «Федеральный исследовательский центр «Казанский научный центр Российской академии наук»

На правах рукописи

КУЧКАЕВ АЙРАТ МАРАТОВИЧ

Активация и функционализация белого фосфора в координационной сфере комплексов кобальта с дифосфиновыми лигандами

1.4.4. Физическая химия

ДИССЕРТАЦИЯ

на соискание ученой степени кандидата химических наук

Научный руководитель:

доктор химических наук, профессор РАН

Яхваров Дмитрий Григорьевич

Казань – 2024

You'll never know if you don't go, You'll never shine if you don't glow. — Smash Mouth, "All Star"

Моим родителям

ОГЛАВЛЕНИЕ

ВВЕДЕНИ	1E	5
1. ЛИТЕРА	АТУРНЫЙ ОБЗОР	13
1.1. Ак	тивация белого фосфора в координационной сфере переходных	
металло	В	14
1.1.1.	Комплексы металлов VIII группы	15
1.1.2.	Комплексы металлов IX группы	25
1.1.3.	Комплексы металлов Х группы	34
1.2. Фу	икционализация белого фосфора в координационной сфере	
переходных металлов		
1.2.1.	Гидролитическая функционализация белого фосфора	39
1.2.2.	Функционализация белого фосфора с образованием новых свя	ізей
P-E (E	= C, H, N, P)	43
1.3. Подходы к деметаллированию фосфорных соединений51		
1.3.1.	Галогенирование металлоцентра	52
1.3.2.	Лигандный обмен	53
1.3.3.	Окисление фосфорного центра	58
1.3.4.	Электрохимическая деметаллирование	59
2. ОБСУЖ	ХДЕНИЕ РЕЗУЛЬТАТОВ	63
2.1. Акті	ивация молекулы белого фосфора в координационной сфере	
комплек	сов кобальта с PNP лигандами	63
2.1.1.0	Синтез PNP лигандов	64
2.1.2. I	Исследование реакционной способности комплексов кобальта с	
PNP лі	игандами по отношению к молекуле белого фосфора	66
2.1.3. I	Исследование строения продуктов активации белого фосфора	
комплексами кобальта с PNP лигандами		
2.1.4. Исследование механизма трансформации молекулы белого фосфора		
в коор,	динационной сфере комплексов кобальта	80

2.2. Функционализация полифосфорных лигандов, образованных при		
металлокомплексной активации молекулы белого фосфора		
2.2.1. Функционализация полифосфорных лигандов с образованием новой		
связи Р-Р		
2.2.2. Электрохимически индуцированная функционализация		
полифосфорных соединений с образованием новой связи Р-С		
3. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ 103		
3.1. Общая информация 103		
3.2. Методы и оборудование 103		
3.3. Методики экспериментов 106		
ЗАКЛЮЧЕНИЕ		
СПИСОК СОКРАЩЕНИЙ116		
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ		
ПРИЛОЖЕНИЕ А 136		

ВВЕДЕНИЕ

Актуальность темы исследования и степень ее разработанности

Промышленным прекурсором значимых и широко востребованных синтетических фосфорных соединений является белый фосфор (P₄) — наиболее реакционноспособная аллотропная модификация элементного фосфора, — ежегодно получаемый в многотоннажных количествах из фосфатной руды в результате взаимодействия с коксом и кремнеземом (Схема 1а). Несмотря на то, что бо́льшая часть получаемого таким образом P₄ подвергается повторному окислению с образованием чистых фосфатов, значительная его часть (около 18%) используется для получения различных фосфорорганических соединений.

Схема 1 – Производство белого фосфора (P₄) из фосфата кальция, содержащегося в фосфатной руде (а); синтез фосфорорганических соединений из PCl₃ (б) или PH₃ (в).

Синтез фосфорорганических соединений — сложный многостадийный процесс, который, как правило, начинается с экологически неблагоприятной стадии хлорирования белого фосфора с образованием трихлорида фосфора (PCl₃) и сопровождается дальнейшей функционализацией с применением металло- или галогенорганических соединений (Схема 1б). Например, промышленное получение одного из наиболее востребованных

фосфорорганических соединений — трифенилфосфина — происходит путем реакции PCl₃ с хлорбензолом в присутствии расплавленного натрия. Таким образом, синтез трифенилфосфина требует использования пирофорных (Na), токсичных и коррозионно-активных (Cl₂ и PCl₃) веществ, а также сопровождается выделением большого количества неорганических отходов (NaCl) в качестве побочных продуктов. Альтернативные пути промышленного получения фосфорорганических соединений сталкиваются со схожей проблемой. Например, различные алкилфосфины могут быть получены реакцией гидрофосфинирования алкенов (Схема 1в), однако в данном процессе используется токсичный газообразный фосфин (PH₃).

Поиск экологичных путей переработки белого фосфора в практически полезные продукты является одной из важнейших задач современной фосфорной химии. Преследуя эту цель, были приложены большие усилия к изучению реакционной способности Р₄ по отношению к реакционным центрам металлов, в надежде найти эффективный метод каталитической конверсии Р₄ в фосфорорганические соединения. Основной стратегией в этом направлении является инициирование реакции P₄ с комплексами переходных металлов с образованием комплексов типа [M]-P_n (активация P₄), которые в дальнейшем подвергаются функционализации С выделением фосфорсодержащего продукта. Несмотря на значительный прогресс в области координационной химии белого фосфора, на данный момент нет ни одного примера эффективной реализации каталитического превращения комплексов [M]-P_n в полезные фосфорорганические соединения. Основной проблемой на пути к этому является химическая непредсказуемость белого фосфора. До сих пор невозможно с точностью предсказать, каким образом будет взаимодействовать Р₄ с тем или иным комплексом переходного металла. А дальнейшая функционализация продуктов металлокомплексной активации Р₄ зачастую оказывается невозможной ввиду их низкой стабильности или химической инертности по отношению к различными субстратам из-за задействованности неподеленных электронных пар (НЭП) атомов фосфора в

координации с металлоцентром. Поэтому поиск комплексов переходных металлов, способных к активации и дальнейшей функционализации Р₄, а также исследование механизма таких превращений, включая строение и свойства образующихся интермедиатов, является актуальной фундаментальной и практической задачей. Одним перспективных направлений ИЗ координационной белого фосфора химии является активация Р₄ с применением комплексов кобальта благодаря коммерческой доступности реагентов и их высокой селективности в этом процессе. Использование доступных фосфиновых лигандов позволяет раскрыть синтетический потенциал координационных соединений на основе кобальта для получения фундаментальных и практически значимых результатов в области активации и функционализации белого фосфора.

Цель работы

Разработка методов металлокомплексной активации молекулы белого фосфора и функционализации образующихся в этом процессе полифосфорных производных в координационной сфере комплексов кобальта с дифосфиновыми лигандами.

Для достижения поставленной цели были сформулированы следующие задачи:

 Исследовать реакционную способность комплексов кобальта с дифосфиновыми лигандами по отношению к молекуле белого фосфора и изучить строение образующихся продуктов.

 Исследовать механизм трансформации молекулы белого фосфора в координационной сфере комплексов кобальта с дифосфиновыми лигандами и природу интермедиатов процесса.

3. Разработать методы функционализации полифосфорных соединений, полученных при активации и последующей трансформации молекулы белого фосфора в координационной сфере комплексов кобальта.

Научная новизна работы

• Впервые проведено исследование реакционной способности комплексов кобальта с хелатными PNP лигандами по отношению к белому фосфору. Получены и охарактеризованы новые продукты активации и трансформации молекулы белого фосфора в координационной сфере комплексов кобальта с PNP лигандами.

• Исследовано влияние заместителя у атома азота PNP лиганда на процесс активации молекулы белого фосфора комплексами кобальта.

• Предложен и квантово-химически обоснован механизм трансформации молекулы белого фосфора в координационной сфере комплексов кобальта, стабилизированных дифосфиновыми PNP лигандами.

• Разработаны новые методы функционализации полифосфорных соединений, полученных на основе белого фосфора в координационной сфере комплексов кобальта, приводящие к образованию фосфорорганических продуктов, содержащих новые связи фосфор-фосфор и фосфор-углерод.

На защиту выносятся следующие положения:

• Исследование реакционной способности комплексов кобальта с PNP лигандами по отношению к молекуле белого фосфора.

• Исследование влияния заместителя у атома азота PNP лиганда на процесс активации молекулы белого фосфора в координационной сфере кобальта.

• Исследование механизма трансформации молекулы белого фосфора в координационной сфере комплексов кобальта с дифосфиновыми PNP лигандами.

8

• Разработка подходов к функционализации полифосфорных соединений, полученных при активации молекулы белого фосфора в координационной сфере комплексов кобальта с дифосфиновыми лигандами.

Теоретическая и практическая значимость работы

Выявленные в данной работе фундаментально значимые результаты позволяют раскрыть механистические аспекты активации и трансформации молекулы P₄ в координационной сфере кобальта, а также позволяют предсказывать возможные пути протекания реакций с другими комплексами переходных металлов. Предложенная методика получения и функционализации полифосфорных соединений в координационной сфере кобальта с дифосфиновыми лигандами позволяет рассматривать их как перспективных кандидатов для практического применения в каталитических процессах и для создания новых материалов на основе фосфорсодержащих соединений.

Личный вклад автора

Диссертант лично выполнил всю экспериментальную часть работы, осуществил анализ и обработку данных физико-химических методов исследования. Автором самостоятельно проведен анализ литературных данных, обобщены результаты работы и сформулированы основные положения, выносимые на защиту. Также соискатель принимал участие в подготовке статей и тезисов докладов по теме диссертации.

Степень достоверности результатов

Достоверность исследования и его результатов подтверждается обширным экспериментальным материалом с использованием современных физико-химических методов анализа.

Апробация работы

Результаты исследований докладывались на итоговых научных конференциях Федерального исследовательского центра «Казанский научный

9

центр Российской академии наук» (2022 и 2023 гг. Казань), 6-ом Северо-Кавказском симпозиуме по органической химии (NCOCS-2022) (2022, г. Ставрополь), III Научной конференции с международным участием «Динамические процессы в химии элементоорганических соединений» (2022, г. Казань), VI Международной научной конференции «Advances in Synthesis and Complexing» (2022, г. Москва), Международной конференции по химии «Байкальские чтения-2023» (2023, г. Иркутск) и на XXIV Международной конференции по химии фосфора (24th International Conference on Phosphorus Chemistry) (2023, г. Нинбо, Китай).

Публикации

На основе полученных в ходе выполнения диссертационной работы результатов опубликованы 3 статьи в журналах, входящих в перечень, рекомендуемый ВАК, и тезисы 5 докладов, представленных в материалах всероссийских и международных конференций.

Структура и объем диссертации

Работа изложена на 145 страницах, состоит из введения, трех глав, выводов и списка литературы. Работа содержит 6 таблиц, 60 схем и 31 рисунок. Библиографический список насчитывает 139 ссылок.

Соответствие диссертации паспорту специальности

Диссертационная работа по содержанию научной И новизне соответствует следующим пунктам паспорта специальности 1.4.4. Физическая химия: п. 1 «Экспериментально-теоретическое определение энергетических и структурно-динамических параметров строения молекул и молекулярных соединений, а также их спектральных характеристик», п. 9 «Связь реакционной способности реагентов с их строением и условиями протекания химической реакции» и п. 11 «Получение методами квантовой химии и компьютерного моделирования данных об электронной структуре, поверхностях потенциальной и свободной энергии, реакционной способности и динамике превращений химических соединений, находящихся в различном окружении, в том числе в кластерах, клатратах, твердых и жидкокристаллических матрицах, в полостях конденсированных сред и белковом окружении».

Работа выполнена на кафедре физической химии Химического института им. А.М. Бутлерова Казанского (Приволжского) федерального университета и в лаборатории металлоорганических и координационных соединений Института органической и физической химии им. А.Е. Арбузова – обособленного структурного подразделения Федерального государственного бюджетного учреждения науки «Федеральный исследовательский центр «Казанский научный центр Российской академии наук» В рамках государственного задания ФИЦ КазНЦ РАН № 0217-2018-0004, гранта Президента Российской Федерации по государственной поддержке ведущих научных школ Российской Федерации НШ-4078.2022.1.3, программы академического лидерства «Приоритет-2030», стратегического гранта Российского научного фонда № 23-13-00427 и субсидии, предоставленной Казанскому федеральному университету для выполнения государственного задания в сфере научной деятельности № FZSM-2023-0020.

Благодарности

Автор благодарен всем, кто способствовал выполнению данной работы. Особую признательность выражает научному автор руководителю профессору РАН, д.х.н. Яхварову Дмитрию Григорьевичу за чуткое и внимательное руководство при выполнении работы. Автор благодарен коллективу лаборатории металлоорганических И координационных соединений ИОФХ им. А.Е. Арбузова ФИЦ КазНЦ РАН, в частности, к.х.н. Кучкаеву Айдару Маратовичу, к.х.н. Сухову Александру Вячеславовичу и к.х.н. Бадеевой Елене Казимировне за всестороннюю поддержку.

Особую благодарность автор выражает д.х.н. Зуевой Екатерине Михайловне за проведение квантово-химических расчетов; к.х.н. Добрынину

Алексею Борисовичу и к.х.н. Исламову Дауту Ринатовичу за проведение рентгеноструктурных исследований; Хаярову Хасану Рафаэлевичу за проведение ЯМР-исследований. Также автор признателен сотрудникам ЦКП-САЦ ФИЦ КазНЦ РАН за проведенные исследования.

Автор благодарен к.х.н. Галимовой Миляуше Фанисовне, Ph.D. Петрову Андрею Владимировичу и к.х.н. Файзуллину Булату Айваровичу за ценные замечания при подготовке диссертации.

1. ЛИТЕРАТУРНЫЙ ОБЗОР

Современные экологические требования к промышленности вдохновили научное сообщество на проведение фундаментальных и практически направленных исследований в области химии элементного белого фосфора. Чтобы избежать нежелательную стадию хлорирования белого фосфора на пути к получению важных фосфорорганических соединений, были приложены большие усилия для изучения процессов активации и трансформации молекулы Р₄ различными реагентами. Можно выделить два основных подхода, разрабатываемых в рамках этих научных исследований: прямая функционализация молекулы белого фосфора и металлокомплексная активация Р₄.

Первый подход заключается использовании в высокореакционноспособных частиц, таких как углеродные радикалы [1–6], карбены [7-12] и некоторые активные соединения элементов главной подгруппы [13–15], в процессах, направленных на прямое образование связей Р-С при реакции с белым фосфором [16]. Однако добиться контролируемой и селективной функционализации P_4 крайне затруднительно. Обзор реакционной способности Р4 по отношению к таким высокореакционным интермедиатам выходит за рамки настоящей работы, поэтому анализ таких взаимодействий в данном литературном обзоре представлен не будет.

Второй подход заключается в использовании комплексов переходных металлов для проведения реакций с белым фосфором в их координационной сфере. Основной целью подхода поиск способа данного является каталитической конверсии белого фосфора В практически важные фосфорорганические соединения. На настоящий момент данное направление достаточно хорошо. Описано развито множество примеров металлокомплексной активации Р₄ [17–19]. Важно отметить, что полученные в ходе этого процесса продукты и интермедиаты реакций представляют большой фундаментальный интерес. В частности, они позволяют раскрыть

механистические аспекты трансформации тетраэдра белого фосфора в координационной сфере переходных металлов.

Анализ литературных данных по теме координационной химии белого фосфора позволяет выделить три стадии, которые претерпевает молекула P₄ на пути к образованию фосфорорганических продуктов: активация P₄, функционализация P₄ и декомплексация продукта. Каждая из этих стадий будет более подробно обсуждена в настоящем литературном обзоре.

1.1. Активация белого фосфора в координационной сфере переходных металлов

Несмотря на то, что белый фосфор проявляет высокую химическую активность по отношению к различным неорганическим реагентам, таким как O_2 , Cl_2 , MOH (M = Na, K), он достаточно инертен по отношению ко множеству комплексов переходных металлов. Контролируемое инициирование реакции между молекулой Р₄ и металлокомплексом путем подбора необходимых реагентов и условий реакции называют металлокомплексной активацией белого фосфора. Зачастую этот процесс протекает с разрывом одной или нескольких связей Р-Р, что сопровождается изменением (трансформацией) геометрии молекулы P₄ или изменением числа атомов фосфора в фрагменте P_n . Если n < 4, то говорят о деградации, а если $n \ge 5$, то говорят об агрегации белого фосфора. В настоящий момент известно множество различных форм фрагмента Р_п к металлоцентру (Рисунок координации 1). Важной фундаментальной задачей химии белого фосфора является установление механизма таких трансформаций.

Рисунок 1 – Структурный мотив некоторых продуктов металлокомплексной активации белого фосфора; [М] – фрагмент комплекса переходного металла.

На настоящий момент известно свыше тысячи примеров активации белого фосфора под действием комплексов переходных металлов, которые нашли отражение в нескольких крупных обзорах [17–19]. В рамках данного литературного обзора мы ограничимся обсуждением тех примеров, которые наиболее близки к теме работы.

1.1.1. Комплексы металлов VIII группы

Координационная химия комплексов металлов VIII группы с белым фосфором отмечается большим представительством комплексов железа. Полученный группой О. Шерера в 1987 году пентафосфаферроцен [Cp*Fe(η^5 -P₅)] (Cp* = пентаметилциклопентадиенид анион) [20], ставший уже классическим примером изолобальной аналогии, дал огромный толчок в развитии химии координационных полимеров и супрамолекулярных соединений на его основе. Кроме этого, для комплексов железа характерны и другие типы активации молекулы белого фосфора, в то время как для комплексов Ru и Os в основном характерна координация интактного тетраэдра P₄.

Комплексы железа

Первая работа по активации белого фосфора комплексами железа датируется 1977 годом, когда Г. Шмидом и Х. Кемпни было исследовано взаимодействие комплекса [Fe₂(CO)₉] с P₄ (Схема 2) [21]. Проведение реакции в бензоле при комнатной температуре приводит к образованию комплекса {[Fe(CO)₄]₃(P₄)}. Согласно мессбауэровской спектроскопии в состава комплексе присутствуют как пяти-, так и шестикоординированные атомы Fe в соотношении 1:2, однако ³¹Р спектроскопия ядерного магнитного резонанса (ЯМР) указывает на наличие четырех эквивалентных атомов Р. Авторы предлагают объяснение такого феномена динамическим поведением групп Fe(CO)₄, способного свободно изменять тип координации. Однако, вследствие отсутствия молекулярной структуры комплекса, об тяжело судить обоснованности этих выводов. Проведение реакции при температуре 70 °С или в условиях фотохимии приводит к образованию полимерного соединения, содержащего дифосфорные блоки [(CO)₃FeP₂]_n.

Схема 2 – Активация Р₄ карбонилами железа.

Позже М. Шеер и др. повторно изучили взаимодействие карбонилов железа [Fe₂(CO)₉] с P₄ при более высокой температуре (80°C). Проведение реакции в этих условиях приводит к образованию комплекса [{Fe(CO)₄(μ_5 - $\eta^{2:1:1:1}$ -P₂)}₂{ μ -Fe₂(CO)₆}₂] кластерной природы (Схема 3) [22]. Молекулярная

структура этого соединения свидетельствует о разрыве четырех связей P-P молекулы P₄ с образованием двух дифосфорных фрагментов, отдаленных друг от друга на расстояние 2.603 Å.

Схема 3 – Активация Р₄ комплексом [Fe₂(CO)₉].

М. Перуццини и др. наблюдали координацию интактной молекулы P₄ в комплексах Fe(II) и Ru(II) с фосфиновыми лигандами. Полученные комплексы состава [Cp^{*}M(L₂)(η¹-P₄)]Cl, где M = Fe, Ru; L = 1/2 Ph₂PCH₂CH₂PPh₂ (dppe), PEt₃, были охарактеризованы методами ³¹P ЯМР-спектроскопии и рентгеноструктурного анализа (PCA) [23] (Схема 4). В особенности следует отметить спектроскопию ЯМР как мощный и очень информативный инструмент для описания подобного типа соединений. Спектр ³¹P{¹H} ЯМР для этих комплексов демонстрирует AM₃ спиновую систему для фрагмента P₄, в которых η¹-связанный с металлом атом фосфора резонирует в существенно более слабых полях ($\delta P_A = -299.54$ м.д. для производного Fe) по сравнению с атомами фосфора в свободной молекуле P₄ ($\delta = -527$ м.д.).

Схема 4 – Активация Р₄ в координационной сфере комплексов Fe и Ru.

Схожие комплексы Fe, в которых реализуется η¹ координация интактной молекулы P₄ были описаны недавно в работах групп М. Перуццини [24,25] и

И. Кроссинга [26]. В первом случае в качестве исходного соединения использовались комплексы [CpFe(dppe)Cl] и [Cp*Fe(dppe)Cl], которые были активированы при помощи $TlPF_{6}$, выступающего в роли галогенсвязывающего реагента. Дальнейшее взаимодействие с Р4 позволило выделить комплексы $[CpFe(dppe)(\eta^1-P_4)]^+$ и $[Cp^*Fe(dppe)(\eta^1-P_4)]^+$ (Рисунок 2). Детальное исследование последнего соединения методами обменной ЯМР- (EXSY ЯМР) ЯМР-спектроскопии, включая эксперименты варьировании И при температуры (VT ЯMP), выявило динамические процессы координации/декоординации тетрафосфорного лиганда. В работе группы И. Кроссинга, в отличие от предыдущих двух примеров, где использовались электрононасыщенные комплексы Fe, были получены И структурно охарактеризованы комплексы $[CpFe(CO)_2(\eta^1 - P_4)]^+$ и $[CpFe(CO)(PPh_3)(\eta^1 - P_4)]^+$ с электронодефицитным металлоцентром (Рисунок 2). Сравнение длин связей в этих комплексах показало, что связь Fe-P в комплексе [CpFe(CO)(PPh₃)(η¹- P_4]⁺ (2.178 Å) короче, чем в комплексе [CpFe(CO)₂(η^1 - P_4)]⁺ (2.209 Å). Более того, связи P-P в этих комплексах (2.144 Å и 2.133 Å) короче, чем в свободной молекуле P₄ (2.21 Å). По мнению авторов это может свидетельствовать о значительном вкладе обратного π-донирования электронов от металлоцентра на молекулярные орбитали лиганда при переходе к комплексу с PPh₃. Теоретические расчеты вместе с экспериментальными данными показали, что координация P₄ к электронодефицитным Fe-центрам приводит к увеличению полярности связи Fe-P, что свидетельствует о том, что такие соединения могут быть охарактеризованы как фосфониевые комплексы.

Рисунок 2 – Комплексы Fe с η^1 -P₄ лигандом.

Следует отметить, что активация P_4 с использованием схожих комплексов Fe в условиях нагревания или УФ облучения часто проходит с неконтролируемыми превращениями внутри комплекса, что приводит к целому набору различных продуктов активации (Схема 5) [27].

Схема 5 – Фотохимическая активация P₄ в координационной сфере комплекса Fe.

Однако О. Шерером было найдено, что использование стерически более загруженного лиганда у атома Fe – 1,2,4-трис(*mpem*-бутил)циклопентадиенид аниона (Cp''') позволяет селективно выделить продукт активации белого фосфора, где тетраэдр P₄ раскрывается в виде тетрафосфабицикло[1.1.0]бутанового фрагмента, выступающего в качестве лиганда (Схема 6). Зачастую такой тип раскрытия молекулы P₄ называют

«butterfly» или «бабочка». Дальнейший термолиз образовавшегося продукта 190°C 3 при В декалине в течение ч позволил выделить пентафосфаферроценовый $[Cp'''Fe(\eta^5-P_5)]$ комплекс И $[{Cp'''Fe}_2(\mu,\eta^{4:4}-P_4)].$ тетрафосфабутадиеновый комплекс Более того. относительно недавно в группе М. Шеера были получены схожие результаты при использовании комплекса $[Cp^{BIG}Fe(CO)_2]_2$ ($Cp^{BIG} = пентакис(4-н$ бутилфенил)циклопентадиенид анион), содержащего еще более стерически загруженный лиганд у атома железа [28]. Любопытно, что этот комплекс способен активировать и другие малые молекулы, такие как As_4 , P_4S_3 , P_4Se_3 и CS_2 .

Схема 6 — Контролируемая активация P_4 в координационной сфере комплекса [{Cp'''Fe}₂(CO)₂].

Получение фосфорного аналога ферроцена породило целый каскад работ, направленных на изучение его свойств и оптимизации условий реакции. Был открыт целый пласт новых 1D и 2D неорганических координационных полимеров и трехмерных супрамолекулярных соединений на его основе [18].

Комплексы рутения

Первый пример активации белого фосфора комплексами рутения относится к работе группы М. Перуццини, где описывалось взаимодействие $[Ru(PPh_3)_3Cl_2]$ с P₄ [29] (Схема 7). Реакция сопровождается высвобождением PPh₃ лигандов и замещением на P₄, скоординированного по η¹-типу, с образованием димерного соединения [{(PPh₃)₂ClRu}(µ-Cl)₃{Ru(PPh₃)₂(η¹- P₄)}].

Схема 7 – Активация P_4 с применением комплекса [Ru(PPh₃)₃Cl₂].

Координация интактной молекулы белого фосфора также наблюдалась при использовании комплексов [Cp*Ru(L₂)Cl] (L = 1/2 dppe, PEt₃) [23] (Схема 8) и [CpRu(L₂)Cl] (L = 1/2 dppe, PPh₃) [30,31]. Любопытно, что замена Cp* лиганда на менее основный лиганд Cp у атома Ru требует использования галоген-связывающих реагентов, таких как TlPF₆ и AgOTf, для протекания реакции. Несмотря на это, продукты активации P₄ комплексами с Cp лигандом проявляют интересную реакционную способность по отношению к нуклеофилам, в особенности к воде. Гидролитическая функционализация этих комплексов будет более подробно обсуждаться в главе 1.2.

Схема 8 – Активация Р₄ в координационной сфере комплексов Ru.

Использование двухкратного избытка комплекса [CpRu(PPh₃)Cl] по отношению к P₄ приводит к образованию биметаллического продукта

 $[{CpRu(PPh_3)_2}_2(\mu,\eta^{1:1}-P_4)](OTf)_2$ (Схема 9). Любопытно, что использование комплекса с более основным PMe₃ лигандом [CpRu(PMe₃)_2Cl] приводит к образованию исключительно биметаллического комплекса[{CpRu(PMe_3)_2}_2(\mu,\eta^{1:1}-P_4)]^{2+} (Схема 10) [32].

Схема 9 – Образование биядерных комплексов Ru с интактной молекулой P₄ в качестве лиганда

Схема $10 - Активация P_4$ комплексом [CpRu(PMe₃)₂Cl].

В 2011 году группа М. Перуццини опубликовала интересную работу, описывающую динамическое поведение лиганда P₄ в координационной сфере рутения [33]. Реакция *транс*-[Ru(dppm)₂(H)(η^2 -H₂)]BF₄ или [Ru(dppm)₂(H)₂] (где dppm = Ph₂PCH₂PPh₂) с HBF₄·Et₂O в CH₂Cl₂ в присутствии белого фосфора дает катионный комплекс *транс*-[Ru(dppm)₂(H)(η^1 -P₄)]⁺, молекулярная структура которого содержит лиганд η^1 -P₄, находящийся в *транс* положении к водородному лиганду (Схема 11а). Проведенные VT ³¹P{¹H} и ³¹P{¹H} EXSY ЯМР-исследования показали свободное вращение лиганда P₄ вокруг связи Ru-

Р, указывая на химическую эквивалентность четырех атомов фосфора в лиганде P_4 при комнатной температуре. Дальнейшая реакция с $[(C_2H_4)Pt(PPh_3)_2]$ привела к продукту внедрения группы $[Pt(PPh_3)_2]$ по одной из связей P-P тетрафосфорного лиганда — комплексу $[{Ru(dppm)_2(H)}(\mu,\kappa^1,\kappa^2-P_4){Pt(PPh_3)_2}]BF_4.$

Схема 11 – Активация P₄ с использованием гидридных комплексов рутения (а) и комплексов [Cp^RRu(PP)Cl] (б).

Исследования динамической природы лиганда P₄ были продолжены с использованием других комплексов Ru(η¹-P₄) [25]. Подобным образом были получены комплексы *mpanc*-[Ru(dppe)₂(H)(η¹-P₄)]⁺, [{Ru(dppe)₂(H)}(µ,κ¹,κ²-P₄){Pt(PPh₃)₂}]BF₄ с использованием лиганда dppe (Схема 11а). Более того, взаимодействие комплексов типа [Cp^RRu(PP)Cl] с P₄ приводит к образованию соединений [Cp^RRu(PP)(η¹-P₄)]⁺ (где Cp^R = Cp или Cp^{*}, PP = (dppe или (PPh₃)₂) (Схема 11б). Комплекс [{CpRu(PPh₃)₂}](µ,κ¹,κ²-P₄){Pt(PPh₃)₂]⁺ был выделен реакцией соответствующего прекурсора с [(C₂H₄)Pt(PPh₃)₂]. Детальные исследования полученных соединений в растворе методами VT ³¹P{¹H} и ³¹P{¹H} EXSY ЯМР-спектроскопии показали, что данные соединения оказались менее гибкими по сравнению с описанными выше комплексами *mpanc*-[Ru(dppm)₂(H)(η¹-P₄)]⁺ и *mpanc*-[Ru(dppe)₂(H)(η¹-P₄)]⁺.

Недавние исследования реакционной способности комплексов [Cp*RuX(PCy₃)] (X = Cl, Br) по отношению к P₄ дали необычные результаты. Так, реакция с 1/2 экв. P₄ ведет к образованию несимметричных биметаллических комплексов [Cp*Ru(PCy₃)(μ^2 , η^2 : η^4 -P₄X₂)RuCp*] (X = Cl, Br) с плоским фрагментом P_4X_2 , который может быть охарактеризован как 1,4дигалогенотетрафосфабутадиен (Схема 12) [34]. Восстановление полученного комплекса металлическим магнием приводит к элиминированию атомов хлора в виде хлорид-ионов с образованием двух слабосвязанных P_2 фрагментов в трехпалубном комплексе [RuCp*($\mu_2,\eta^{2:2}-P_2$)₂RuCp*]. Введение в реакционную смесь, содержащую [Cp*Ru(PCy₃)($\mu^2,\eta^2:\eta^4-P_4Cl_2$)RuCp*], галогенсвязывающего агента GaCl₃ позволяет получить нестабильный катионный продукт моноэлиминирования хлорид-иона – комплекс [RuCp*(PCy₃)($\mu_2,\eta^{2:4}P_4Cl$)RuCp*][GaCl₄].

Схема 12 – Трансформация P_4 в координационной сфере комплексов Ru, [Ru] = [RuCp*].

Комплексы осмия

Вследствие своей высокой стоимости, реакционная способность комплексов осмия по отношению к белому фосфору недостаточно изучена. Одним из немногих примеров активации P₄ комплексами Os является комплекс [CpOs(PPh₃)₂(η^1 -P₄)]OTf, полученный взаимодействием [CpOs(PPh₃)₂Cl] с P₄ в присутствии галоген-связывающего агента AgOTf [35]. Дальнейшее взаимодействие полученного комплекса с [CpRu(PPh₃)₂Cl] позволило выделить гетеробиметаллический димер [{CpRu(PPh₃)₂}{CpOs(PPh₃)₂}(μ , $\eta^{1:1}$ -P₄)]²⁺ (Схема 13).

Схема 13 – Активация Р₄ комплексом [CpOs(PPh₃)₂Cl].

1.1.2. Комплексы металлов IX группы

Среди металлокомплексов IX группы наиболее изучена активация белого фосфора комплексами кобальта. Для этих комплексов представлены не только примеры активации молекулы Р₄, но и ее фрагментации / реагрегации и функционализации. Комплексы Ir и Rh представлены гораздо меньше.

Комплексы кобальта

Первым примером активации белого фосфора в координационной сфере кобальта является кластерный комплекс [{CpCo(µ₃-P)}₄], полученный Г. Симоном и Л. Далом в 1973 году реакцией Р₄ с [CpCo(CO)₂] [36]. Молекулярная структура продукта выявила, что каждый атом фосфора в комплексе ведет себя как мостиковый лиганд, связывающий сразу три атома кобальта (Рисунок 3).

Рисунок 3 – Структурная формула [$\{CpCo(\mu_3-P)\}_4$].

Весомый вклад в развитие активации белого фосфора комплексами IX группы был сделан группой Л. Саккони в период с конца 1970-х до начала 1990-х годов. В работе [37] было показано, что взаимодействие водного [Co(H₂O)₆](BF₄)₂ с P₄ в присутствии тридентатного лиганда 1.1.1трис(дифенилфосфинометил)этана (triphos) образованию приводит к [(triphos)Co(η³-cyclo-P₃)] (Схема 14). Схожим образом были получены производные комплексы Ir, Rh. Использование потенциально тетрадентатного трис(2-дифенилфосфиноэтил)амина (NP_3) позволяет лиганда получить похожий комплекс [(NP₃)Co(η³-cyclo-P₃)], в котором так же реализуется деградация молекулы белого фосфора в cyclo-P₃ лиганд (Схема 14) [38]. Примечательно, что лиганд NP₃ играет роль тридентатного лиганда, в котором три атома фосфора координируются к атому кобальта.

Схема 14 – Активация Р₄ в координационной сфере комплексов Со.

Реакционная способность комплекса [(triphos)Co(η^3 -*cyclo*-P₃)] была хорошо изучена по отношению к различным комплексам переходных металлов. Среди этих работ можно выделить образование двойных сэндвичевых структур. В работах [39–41] описан простой способ получения гомо- и гетеробиметаллических димерных комплексов состава [{(triphos)Co}(μ , $\eta^{3:3}$ -*cyclo*-P₃){M(triphos)}]²⁺ (M = Ni, Ir, Rh) (Схема 15).

Схема 15 – Образование гомо- и гетерометаллических биядерных комплексов с *cyclo*-P₃ лигандом.

В середине 1980х гг группой С. Мидоллини был описан интересный пример высокоселективной активации молекулы белого фосфора, в котором тетраэдр P₄ раскрывается в η⁴-координированный тетрафосфорный фрагмент [42] (Схема 16). Реакция протекает в *опе-роt* условиях при нагревании смеси, содержащей Co(BF₄)₂×6H₂O, 1,1-бис(дифенилфосфино)метан (dppm) и P₄, и приводит образованию к комплекса $[Co(Ph_2PCH_2P(Ph)_2PPPPP(Ph)_2CH_2PPh_2)]BF_4$ с практически количественным выходом. Комплекс содержит уникальный зигзагообразный фрагмент Р₄, который образовался в результате ассоциации молекулы Р₄ с двумя лигандами dppm в координационной сфере кобальта. Распределение зарядов внутри молекулы — вопрос дискуссионный. Учитывая общий положительный заряд комплекса, возможна реализация трех разных резонансных структур лиганда, которым соответствуют три разные степени окисления металлоцентра (-1, +1, -1)

+3). По мнению авторов, в данном случае реализуется степень окисления кобальта -1, которому соответствует дикатионный лиганд Ph₂PCH₂P⁽⁺⁾(Ph)₂(P=P-P=P)P⁽⁺⁾(Ph)₂CH₂PPh₂, т.е. молекула P₄ раскрывается в тетрафосфабутадиеновый фрагмент. Об этом свидетельствует то, что, согласно молекулярной структуре комплекса, центральная связь P-P тетрафосфорного фрагмента лиганда длиннее соседних (2.193 Å против 2.172 Å).

Схема 16 – Активация и трансформация P₄ в координационной сфере комплекса Со с лигандом dppm.

Несмотря на относительную открытость фрагмента Р₄ в структуре [Co(Ph₂PCH₂P(Ph)₂PPPPP(Ph)₂CH₂PPh₂)]BF₄, комплекса это соединение оказалось весьма стабильным и химически инертным по отношению к различным органическим и неорганическим молекулам, за исключением нескольких комплексов переходных металлов. В работе [43] С. Мидоллини и наблюдали образование др. гетерометаллических комплексов $[{Co(Ph_2PCH_2P(Ph)_2PPPPP(Ph)_2CH_2PPh_2)}{M(CO)_5}]^+$ (\mathbf{M}) = Cr. W) И $[{Co(Ph_2PCH_2P(Ph)_2PPPPP(Ph)_2CH_2PPh_2)}{Cr(CO)_5}_2]^+$ при проведении реакции с соответствующим комплексом $M(CO)_6$ в фотохимических условиях (Схема 16). Молекулярная структура вольфрамового производного показала, что продукт сохраняет все структурные особенности исходного комплекса, но в нем дополнительно реализуется координация одного из центральных атомов фосфора к фрагменту $W(CO)_5$.

Позже группой М. Перуццини в сотрудничестве с нашей научной группой реакцией [Co(Ph₂PCH₂P(Ph)₂PPPPP(Ph)₂CH₂PPh₂)]BF₄ с [Pt(C₂H₄)(PPh₃)₂] был получен гетеробиметаллический комплекс [Co(μ , $\eta^{1:2:1}$ -P=P-PPh₂CH₂PPh₂)₂{Pt(PPh₃)₂}]BF₄, в котором реализуется окислительное внедрение фрагмента Pt(PPh₃)₂ по центральной связи P-P лиганда (Схема 16) [44]. Продукт реакции содержит необычный цвиттер-ионный лиганд Ph₂PCH₂Ph₂P⁽⁺⁾-P=P⁽⁻⁾ соединяющий Со и Pt центры.

В 2012 году группой У. Радиуса была описана ступенчатая деградация молекулы белого фосфора комплексом Co(I) [45]. Взаимодействие комплекса $[Cp*Co(iPr_2Im)(\eta^2-C_2H_4)]$ (iPr_2Im = 1,3-диизопропилимидазолин-2-илиден) с фосфором дает комплекс [Cp*Co(i Pr₂Im)(κ^{2} -P₄)], содержащий белым скоординированную молекулу белого фосфора, раскрытую в виде «бабочки» (Схема 17). Этот комплекс в дальнейшем взаимодействует со вторым $[Cp*Co(^{i}Pr_{2}Im)(\eta^{2}-C_{2}H_{4})],$ образуя эквивалентом биядерный продукт $[{Cp*Co(iPr_2Im)}_2(\mu,\kappa^2:\kappa^2-P_4)],$ содержащий мостиковый лиганд *cyclo*-P₄⁴⁻. Нагревание последнего при 80°С в толуоле приводит к диссоциации одного лиганда ^{*i*}Pr₂Im и перераспределению тетрафосфорного лиганда в цепочечный *catena*-P₄ лиганд с образованием комплекса [Cp*Co(μ , η^4 : κ^2 -P₄)Co(^{*i*}Pr₂Im)Cp*]. Дальнейшее нагревание этого комплекса при 135°С приводит к диссоциации второго лиганда ^{*i*}Pr₂Im и разрыву центральной связи P-P тетрафосфорного лиганда с образованием описанного ранее комплекса $[{Cp*Co(\mu,\eta^2:\eta^2-P_2)}_2]$ [46]. Полученные интермедиаты реакции послужили основой для изучения механизма трансформаций Р₄ в этих системах с использованием методов квантовохимического моделирования [47]. Расчеты показали, что образование биядерного комплекса [{ $Cp^*Co(Pr_2Im)$ }_2(µ, $\kappa^2:\kappa^2-P_4$)], а также диссоциация карбеновых лигандов являются ключевыми стадиями реакции. Отмечается, что такая диссоциация лигандов необходима, т.к. освобождение вакантных позиций у атома кобальта облегчает дальнейшую трансформацию лиганда Р₄.

Схема 17 – Ступенчатая активация Р₄ в координационной сфере Co(I).

В 2019 году совместная работа групп Я. Вайганда и Р. Вольфа принесла интересные результаты по теме активации и функционализации молекулы белого координационной сфере фосфора В комплексов кобальта. Взаимодействие комплекса [K(Et₂O){(^RBIAN)Co(η^4 -1,5-cod)}] (^RBIAN = бис(2,6-диизопропилфенилимино)аценафтендиимин (^{dipp}BIAN), бис(мезитилимино)аценафтендиимин (^{Mes}BIAN)) с комплексом $[(nacnac)Ga(\kappa^2-P_4)]$ (nacnac = 2,2,4,4-тетракис(2,6-диизопропиламино)пентан-3-ид анион), полученного реакцией комплекса [(nacnac)Ga] с P₄ [48], приводит гетеробиметаллического к образованию Co-Ga комплекса $[K(dme)_2\{(^{R}BIAN)Co(\mu,\eta^4:\kappa^2-P_4)Ga(nacnac)\}]$ (dme = диметоксиэтан, $^{R}BIAN =$ dippBIAN, MesBIAN) с мостиковым цепочечным фрагментом catena-P4 (Схема 18) [49]. Выделенные продукты дальнейшем были В

профункционализированы фосфорорганическими агентами (подробнее в главе 1.2.).

Схема 18 – Образование гетеробиметаллического Со-Ga комплекса с Р₄.

Позже в тех же группах был выделен анионный комплекс [(PHDI)Co(η^4 -P₄)]⁻ (PHDI = бис(2,6-диизопропилфенил)фенантрен-9,10-диимин) реакцией [(PHDI)Co(η^4 -1,5-COD)]⁻ с белым фосфором (Схема 19а) [50]. Полученный комплекс также проявляет интересную реакционную способность по отношению к диалкил- и диарилхлорфосфинам (подробнее в главе 1.2.). В 2023 году в качестве продолжения этой работы реакцией комплекса [(Ar*BIAN)Co(η^4 -1,5-COD)]⁻ с P₄ был получен комплекс [(Ar*BIAN)Co(η^4 -P₄)]⁻ (Ar* = 2,6-бензгидрил-4-изопропилфенил, BIAN = 1,2бис(арилимино)аценафтен диимин) (Схема 19б) [51].

Схема 19 – Образование комплексов Со с η^4 -Р₄-лигандом.

Комплексы родия и иридия

Первый пример активации P₄ комплексами родия датируется 1970 годом, когда были выделены комплексы состава [RhCl(L)₂(η^2 -P₄)] (L = PPh₃, AsPh₃, P(*p*-Tol)₃, P(*m*-Tol)₃) (Tol = толил) (Схема 20) [52]. Реакции проводились при -78 °C взаимодействием соответствующего комплекса [RhCl(L)₃] с P₄. При этом наблюдалось элиминирование одного из лигандов L и η^2 -координация интактной молекулы P₄. Примечательно, что именно эта работа является исторически первым примером металлокомплексной активации белого фосфора.

Схема 20 – Активация Р₄ в координационной сфере комплексов Rh.

Наряду с вышеупомянутыми комплексами Со с тридентатными фосфиновыми лигандами группой Л. Саккони были получены аналогичные комплексы Rh и Ir состава [(triphos) $M(\eta^3$ -*cyclo*-P₃)] (M = Rh, Ir) [53]. Производное родия было получено из реакционной смеси, содержащей [Rh(C₂H₄)₂Cl]₂, triphos и избыток P₄. Иридиевое производное было получено в схожих условиях, за исключением того, что в качестве прекурсора металла был взят комплекс [Ir(PPh₃)(CO)Cl]. Реакционная способность этих комплексов схожа с Со аналогом. В частности, для них так же характерны реакции с образованием трехпалубных димерных комплексов [54,55] (Схема 15).

В ходе совместной работы нашей научной группы и группы М. Перуццини было найдено, что комплексы Rh и Ir, стабилизированные дифосфиновым лигандом dppm [M(dppm)₂]OTf (M = Rh, Ir; dppm =

PPh₂CH₂PPh₂) проявляют высокую реакционную способность по отношению к молекуле P_4 (Схема 21) [56]. Так. были выделены комплексы [M(dppm)(Ph₂PCH₂PPh₂PPPP)]OTf (M= Rh, Ir), в которых наблюдалась новая топология фрагмента P₄, образованная *cyclo*-P₃ фрагментом, связанным с обособленным функционализированным атомом фосфора. Такой тип лиганда может рассматриваться как промежуточный структурный мотив, ведущий к раскрытию Р₄ в зигзагообразную цепь, наблюдаемую в описанном выше комплексе кобальта [Co(Ph₂PCH₂P(Ph)₂PPPPP(Ph)₂CH₂PPh₂)]BF₄ (Схема 16). Более низкотемпературное ЯМР-исследование того, реакции использованием менее активного прекурсора [Ir(dppm)₂]OTf позволило зафиксировать биметаллический димерный интермедиат реакции $[{Ir(dppm)_2}_2(\mu, \eta^{2:2}-P_4)]^{2+}$. Увеличение температуры до 25 °С приводит к образованию конечного продукта, тогда как медленная кристаллизация при - 20 °С позволила выделить продукт η²-координации Р₄ по типу «бабочки» — [Ir(dppm)₂(η^2 -P₄)]OTf.

Группой М. Капорали и М. Перуццини была исследована активация молекулы белого фосфора в координационной сфере димерного комплекса Rh(I) — [RhCl(CO)(dppm)]₂ [57]. Продуктом такой реакции является комплекс [Rh₂(CO)₂(µ,dppm)₂(µ,η²-P₂)] с мостиковым фрагментом P₂ (Схема 22). Молекулярная структура комплекса демонстрирует перпендикулярное

расположение лиганда P_2 по отношению к интерметаллическому вектору, образуя тетраэдр Rh_2P_2 . По мнению авторов образование фрагмента P_2 может быть рассмотрено как окислительное присоединение молекулы P_4 к родиевым центрам. На основе результатов низкотемпературного ЯМР-исследования, авторы предполагают образование интермедиата с лигандом η^2 - P_4 , раскрытого в виде «бабочки» (Схема 22). Сравнение P_2 лиганда с изолобальными фрагментами S_2^{2-} и C_2H_2 , указывают на большую схожесть фосфорного лиганда с дисульфидным анионом, чем с ацетиленом. Поэтому авторы описывают лиганд в комплексе как P_2^{4-} анион, а формальная степень окисления металла — Rh(II).

Схема 22 – Активация P₄ в координационной сфере биядерного комплекса Rh.

1.1.3. Комплексы металлов Х группы

Комплексы никеля

Активация молекулы белого фосфора в координационной сфере комплексов никеля берет свое начало в 1979 году, когда группой Л. Саккони был выделен комплекс $[(\kappa^3-P,P,P-NP_3)Ni(\eta^1-P_4)]$ (NP₃ = трис(2дифенилфосфиноэтил)амин), реакцией $[(\kappa^4-NP_3)Ni]$ с P₄ (Схема 23) [58]. Интересно, что координация молекулы белого фосфора к атому никеля сопровождается декоординацией атома азота лиганда NP₃. Полученный комплекс оказался нерастворим во всех распространенных органических растворителях, поэтому дальнейшее изучение реакционной способности этого соединения оказалось невозможным.

Схема 23 – Активация Р₄ в координационной сфере комплекса Ni.

Взаимодействие аквакомплекса $[Ni(H_2O)_6](BF_4)_2$ с P₄ в присутствии тридентатного лиганда triphos приводит к исключительному образованию трехпалубного димерного комплекса $[{(triphos)Ni}_2(\mu,\eta^{3:3}-cyclo-P_3)](BF_4)_2$ (Схема 24) [37,40]. Примечательно, что проведение реакции с P₄S₃ вместо P₄ ведет к образованию мономерного комплекса $[(triphos)Ni(\eta^3-cyclo-P_3)]BF_4$ [59], изоструктурного аналогичным соединениям подгруппы кобальта $[(triphos)M(\eta^3-cyclo-P_3)]$ (M = Co, Rh, Ir) (Схема 24).

Схема 24 – Образование моно- и биядерных комплексов Ni с *cyclo*-P₃-лигандом.

Образование подобных комплексов, содержащих *cyclo*-P₃ фрагмент, было недавно описано группой М. Шеера [60]. В качестве прекурсора Ni

использовался комплекс со стерически объемным лигандом Cp^{'''} (Cp^{'''} = 1,2,4трис(*трет*-бутил)циклопентадиенид анион) — [Cp^{'''}Ni(CO)]₂, который при взаимодействии с P₄, образует комплекс [Cp^{'''}Ni(η^3 -P₃)]. Реакционная способность этого комплекса была хорошо изучена (Схема 25). Так было найдено, что при взаимодействии с калием происходит образование анионного биядерного комплекса [(Cp^{'''}Ni)₂(μ , $\eta^{2:2}$ -P₈)]²⁻, а взаимодействие с NaNH₂ в качестве нуклеофила образует анионный димерный комплекс [(Cp^{'''}Ni)₂(μ , $\eta^{3:3}$ -P₃)]⁻. Последовательное окисление последнего при использовании AgOTf позволило выделить нейтральный продукт [(Cp^{'''}Ni)₂(μ , $\eta^{3:3}$ -P₃)]. Взаимодействие с другими нуклеофилами привело к образованию интересных продуктов функционализации (Глава 1.2.).

Схема 25 – Химические превращения комплекса Ni с *cyclo*-P₃-лигандом.

Комплексы палладия и платины

Координационная химия белого фосфора в координационной сфере комплексов Pd и Pt представлена очень скудно. Известен комплекс [(κ^3 -P,P,P-NP₃)Pd(η^1 -P₄)], аналогичный описанному выше комплексу Ni [61]. Также были получены моно- и биядерные комплексы с трифосфиновыми лигандами triphos и NP₃, в которых реализуется η^3 -*cyclo*-P₃ деградация белого фосфора: [(triphos)M(η^3 -*cyclo*-P₃)]BF₄ (M = Pd, Pt), [{(tripod)Pd}₂(μ , η^3 -*cyclo*-P₃)]BPh₄ (tripod = triphos; κ^3 -P,P,P-NP₃) (Схема 26) [61]. Полученные соединения изоструктурны их Ni, Co, Rh, Ir аналогам.

Схема 26 – Образование моно- и биядерных комплексов Pd с *cyclo*-P₃-лигандом.

Существует несколько примеров внедрения фрагмента {Pt(PPh₃)₂} по связи Р-Р полифосфорных лигандов, образованных при активации молекулы белого фосфора в координационной сфере других переходных металлов, таких $[\{(triphos)Ni(\mu,\eta^{3:2}-cyclo-P_3)\}\{Pt(PPh_3)_2\}]^+$ [62], $[Co(\mu, \eta^{1:2:1}-PdP$ как $PPh_2CH_2PPh_2_2{Pt(PPh_3)_2}BF_4$ [63]. [M(dppm)(Ph₂PCH₂- PPh_2PPPP {Pt(PPh_3)₂}]OTf (M = Rh, Ir) [64], [{Ru(L)₂(H)}(P_4){Pt(PPh_3)₂}]BF_4 (L = dppm, dppe) [26], [CpRu(PPh₃)₂)}(µ, $\kappa^1:\kappa^2-P_4$){Pt(PPh₃)₂}]⁺ [33] Прямая активация молекулы P_4 фрагментом {Pt(PPh_3)_2}, in situ генерируемого из комплексов $[Pt(C_2H_4)(PPh_3)_2]$ или $[Pt(PPh_3)_4]$, была исследована М. Шеером [65], однако. вследствие аморфности продукта, результат такого взаимодействия был малоинформативен. Позже эксперимент был повторен в присутствии [Cr(CO)₅(TГФ)], введенного с целью стабилизации продукта. В результате был выделен гетерометаллический комплекс [(PPh₃)₂Pt(µ₃, η^{2:1:1}-P₄){Cr(CO)₅}₂] (Схема 27) [66].

Схема 27 – Активация Р₄ в координационной сфере комплексов Рt.

37

1.2. Функционализация белого фосфора в координационной сфере переходных металлов

Если активация молекулы белого фосфора связана исключительно с образованием новых связей между атомами фосфора молекулы P₄ и атома переходного металла, то под функционализацией P₄ понимают контролируемый процесс образования новых химических связей между атомами фосфора и атомов других неметаллических элементов.

Изучение металлокомплексной активации молекулы белого фосфора позволило выделить множество различных комплексов переходных металлов с полифосфорными лигандами. Однако последующая функционализация этих комплексов оказалась необычайно сложной задачей вследствие нестабильности или высокой химической инертности продуктов активации Р₄. Поэтому металлокомплексная функционализация молекулы белого фосфора привлекает все большее внимание со стороны исследователей [67].

Безусловно, проблема функционализации комплексов с полифосфорными лигандами затрагивает и фундаментальные проблемы химии элементного фосфора. Несмотря на большой объем полученных результатов в области металлокомплексной активации Р₄, до сих пор невозможно с точностью предсказать, как тот или иной комплекс переходного металла будет взаимодействовать с Р₄. В случае с функционализацией Р₄ ситуация усложняется вследствие крайне малого количества примеров успешной реализации процесса.

1.2.1. Гидролитическая функционализация белого фосфора

Пожалуй, наиболее простым реагентом для функционализации белого фосфора является вода. Известно, что гидролиз Р₄ в присутствии кислорода воздуха приводит к образованию ортофосфорной кислоты H₃PO₄ (при взаимодействии оксида фосфора (V) с водой), тогда как фосфористая кислота H₃PO₃ представляет больший синтетический интерес вследствие наличия способной к функционализации связи P-H. Промышленные способы

38

получения H_3PO_3 сталкиваются с теми же проблемами, что и синтез фосфорорганических соединений, т.к. они связаны с гидратацией PCl₃. Поэтому поиск новых путей каталитического гидролиза P₄ с образованием H_3PO_3 представляет актуальную практическую задачу. Дополнительную сложность представляют химическая инертность и нерастворимость P₄ в воде. В связи с этим одним из основных путей реализации этого процесса является активация и гидролитическая функционализация P₄ в координационной сфере переходных металлов.

Согласно литературным данным, тема металлокомплексного гидролиза белого фосфора развита очень слабо. Наибольшую активность в этом процессе показывают комплексы платиновых элементов, в частности комплексы рутения и палладия.

Гидролитическое диспропорционирование интактного тетраэдра P₄ в координационной сфере моно- и биядерных комплексов Ru была детально исследована группой П. Стоппиони и М. Перуццини.

было найдено, что $[CpRu(PPh_3)_2(\eta^1-P_4)]^+$ практически Авторами количественно образует фосфиновый комплекс [CpRu(PPh₃)₂(PH₃)]⁺ реакцией со 100 экв H₂O (Схема 28а) [30]. Побочными продуктами реакции являются фосфорсодержащие кислоты H₃PO₃ и H₃PO₄. Замена трифенилфосфинового лиганда бидентатным dppe или натриевой солью метасульфированного трифенилфосфина (TPPMS = $Ph_2P(m-C_6H_4SO_3Na)$) дает также комплексы с фосфористой (Р(ОН)₃) и таутомерными формами фосфорноватистой (РН(ОН)₂) кислот в качестве лиганда в виде побочных продуктов [31,68]. Конечное распределение продуктов реакции в смеси сильно зависит от условий проведения реакции.

Схема 28 – Гидролитическая функционализация P_4 в координационной сфере моно- (а) и биядерных (б) комплексов Ru. [Ru] = [CpRu(PPh₃)₂]; [Ru''] = [CpRu(dppe)]; [Ru''] = [CpRu(TPPMS)₂]; [Ru'''] = [Cp*Ru(dppe)].

 $[{CpRu(PPh_3)_2}_2(\mu,\eta^{1:1}-P_4)]^{2+}$ Гидролиз биядерного комплекса происходит более сложным образом (Схема 28б). Реакция со 100 экв. H₂O приводит к дифосфиновому комплексу $[{CpRu(PPh_3)_2}_2(\mu,\eta^{1:1}-P_2H_4]^{2+}$ в качестве основного продукта [69]. Побочными продуктами реакции являются H_3PO_3 , а также моноядерные комплексы, содержащие PH_3 , $PH(OH)_2$ и $P(OH)_3$ в качестве лигандов. При увеличении избытка воды до 500 экв. реакция образованием протекает селективно С 1 экв. H₃PO₃ И 1 экв. 1- $[{CpRu(PPh_3)_2}_2{\mu^{1:3},\eta^{1:1}}$ гидрокситрифосфанового комплекса РН(ОН)РНРН₂}]²⁺ [70]. Проведение реакции при использовании 20 экв. воды заметно снижает скорость реакции и приводит к образованию двух основных $[{CpRu(PPh_3)} {CpRu(PPh_3)_2} {\mu^{1,4:3},\eta^{2:1}}$ продуктов реакции: комплекса Р(OH)₂РНРНРН(OH)}]²⁺ с 1,1,4-трис(гидрокси)тетрафосфановым лигандом и $[{CpRu(PPh_3)_2}{CpRu(PPh_3)}{P(OH)_3}(\mu,\eta^{1:1}-P_2H_4)],$ биядерного комплекса содержащего мостиковые P₂H₄ и P(OH)₃ лиганды [71]. Среди побочных

продуктов реакции были найдены H_3PO_3 , биядерный комплекс [{CpRu(PPh_3)_2}_2(µ, η^{1:1}-P_2H_4]^{2+} и моноядерные комплексы с лигандами PH_3, PH(OH)_2 и P(OH)_3.

Окисление комплекса [{CpRu(PPh₃)₂}₂(μ , $\eta^{1:1}$ -P₄)]²⁺ молекулярным иодом в присутствии следовых количеств воды приводит к образованию комплекса [{CpRu(PPh₃)₂}₂($\mu^{1:3}$, $\eta^{1:1}$ -P₄H₂I)]⁺, содержащего циклический (P₄H₂I)⁻ анион [72] (Схема 28б). Растворение полученного комплекса в ТГФ приводит к диссоциации иодид-аниона из тетрафосфорного лиганда с образованием комплекса [{CpRu(PPh₃)₂}₂($\mu^{1:3}$, $\eta^{1:1}$ -P₄H₂)]²⁺, с [1.1.0]бициклотетрафосфановым лигандом. Дальнейший гидролиз последнего приводит к образованию H₃PO₃ и трифосфанового комплекса [{CpRu(PPh₃)₂}₂($\mu^{1:3}$, $\eta^{1:1}$ -P₃H₅)]²⁺.

Активация и последующий гидролиз P_4 под действием комплексов Pd изучались ранее в нашей научной группе. В работе [73] было показано, что комплексы [Pd(PPh₃)₂X₂] (X = Cl, Br) проявляют активность по отношению к P_4 в присутствии NaBPh₄, выполняющего роль галоген-связывающего реагента. Последующий гидролиз образующихся в ходе реакции с P_4 фосфидов палладия неизвестного состава позволяет селективно выделить фосфористую кислоту H_3PO_3 . На схеме 29 изображен предложенный каталитический цикл этого процесса. По мнению авторов окисление P_4 сопровождается восстановлением Pd(II) – Pd(0).

Схема 29 – Каталитическая схема образования фосфористой кислоты из Р₄ при использовании комплекса [Pd(PPh₃)₂Br₂].

В патенте [74] описывается способ получения фосфористой кислоты из P_4 с использованием коммерчески доступного комплекса $[Pd_2(dba)_3]$ (dba = дибензилиденацетон). По мнению авторов, взаимодействие этого комплекса с P_4 приводит к образованию фосфидов Pd переменного состава, сопровождающееся частичным или полным высвобождением лиганда dba из координационной сферы. Последующий гидролиз образующихся фосфидов палладия позволяет получить фосфористую кислоту H_3PO_3 в качестве основного продукта реакции (Схема 30).

Схема 30 – Каталитический цикл образования H₃PO₃ из P₄ с использованием комплекса [Pd₂(dba)₃].

Недавно в ходе совместной работы групп Д.Г. Яхварова и М.Н. Соколова была исследована активность гетерометаллических кубановых

кластеров с ядром { Mo_3PdS_4 } в процессе гидролиза белого фосфора [75]. В работе показано, что реакция комплексов [Mo_3 {Pd(dba)} $S_4Cl_3(dbbpy)_3$]PF₆, [Mo_3 {Pd(tu)} $S_4Cl_3(dbbpy)_3$]Cl, и [Mo_3 {Pd(dba)} $S_4(acac)_3(py)_3$]PF₆ (где dbbpy = 4,4'-ди-*трет*-бутил-2,2'-бипиридил, tu = тиомочевина, acac = ацетилацетонат, ру = пиридин, dba = дибензилиденацетон) с белым фосфором в присутствии воды приводит к образованию H_3PO_3 в качестве основного продукта с выходом до 72%. Более того, был обнаружен основной интермедиат этого процесса — комплекс [Mo_3 { $PdP(OH)_3$ } $S_4Cl_3(dbbpy)_3$]⁺, содержащий координированную молекулу фосфористой кислоты в виде ее таутомерной формы $P(OH)_3$ (Схема 31).

Схема 31 – Гидролиз Р₄ под действием кластеров {Mo₃PdS₄}.

1.2.2. Функционализация белого фосфора с образованием новых связей Р-Е (E = C, H, N, P)

Первая работа по теме металлокомплексной функционализации белого фосфора была опубликована в 1974 году группой Д. Грина [76]. Авторами была описана реакция гидридного комплекса [Cp₂MoH₂] с избытком P₄ в горячем толуоле. Продуктом этого взаимодействия является дифосфеновый комплекс [Cp₂Mo(η²-P₂H₂)], структура которого позже была установлена группой Е. Канилло (Схема 32) [77].

Схема 32 – Одностадийная активация и функционализация P₄ в координационной сфере комплекса Мо.

Похожий подход в одностадийной активации и функционализации P₄ с использованием комплексов Rh и Ir был предложен группой M. Перуццини [78]. Гидридные комплексы [(triphos)MH₃] (M = Rh, Ir; triphos = 1,1,1-трис(дифенилфосфинометил)этан) позволяют выделить продукт прямого гидрирования P₄ в PH₃ при проведении процесса в закрытой системе (Схема 33). Побочным продуктом является комплекс [(triphos)M(η^3 -*cyclo*-P₃) (M = Rh, Ir), образующийся в стехиометрических количествах. Проведение той же реакции в открытой системе с использованием Rh комплекса дает продукт [(triphos)Rh(η^1 : η^2 -HP₄)]. Использование комплекса [(triphos)Ir(η^2 : η^2 -HP₄)], при этом был зафиксирован интермедиат этой реакции — [(triphos)Ir(H)(η^2 -P₄)], в котором реализуется раскрытие молекулы P₄ по типу «бабочки».

Схема 33 – Одностадийная активация и функционализация P₄ в координационной сфере комплексов Rh и Ir.

Позже этой же научной группой были выделены продукты функционализации белого фосфора с образованием связей Р-С. Комплексы

родия [(triphos)Rh(η^1 : η^2 -RP₄)] (R = Me, Et, Ph) были получены реакцией соответствующих этиленовых комплексов [(triphos)Rh(R)(η^2 -C₂H₄)] с P₄ [79] (Схема 33). Реакция протекает с высвобождением лабильного этиленового лиганда и миграцией органического фрагмента к одному из атомов фосфора фрагмента Р₄. Интересно, что при использовании гидридного производного [(triphos)Rh(H)(η^2 -C₂H₄)], продуктом реакции вместо ожидаемого комплекса [(triphos)Rh(η^1 : η^2 -HP₄)] является [(triphos)Rh(η^1 : η^2 -EtP₄)], в котором молекула этилена внедряется по связи Rh-H, с последующей миграцией этильного фрагмента к активированной молекуле Р₄. Более того, гидрирование комплексов [(triphos)Rh(η^1 : η^2 -RP₄)] (R = Me, Et, Ph) ведет к образованию комплекса [(triphos)Rh(η^3 -*cyclo*-P₃)] и высвобождению первичных фосфинов RPH₂. была изучена реакционная способность Также комплексов [(triphos) $M(\eta^1:\eta^2-RP_4)$] (M = Rh, Ir; R = H, Me, Et, Ph) по отношению к электрофилам [80]. Взаимодействие [(triphos)Rh($\eta^1:\eta^2-RP_4$)] (R = H, Ph) с MeOTf или MeI дает продукты двойной функционализации – комплексы $[(triphos)Rh(\eta^1:\eta^2-MeRP_4)]^+$ (R = H, Ph), в которых метилированию подвергается R-функционализированный атом фосфора. Интересно, что комплекс [(triphos)Rh(η^1 : η^2 -MeHP₄)]⁺ был также получен протонированием комплекса [(triphos)Rh(η^1 : η^2 -MeP₄)] при реакции с HBF₄×OMe₂, что подтверждает идею о том, что электрофильной атаке подвергается функционализированный атом фосфора.

Нуклеофильная функционализация *cyclo*-P₃ фрагмента была недавно исследована в группе М. Шеера с использованием комплексов Ni [60]. Реакция $[Cp'''Ni(\eta^3-P_3)]$ с LiNu (Nu = PPh₂, NMe₂) приводит к функционализации одного из атомов фосфора — комплексу $[Cp'''Ni(\eta^2-P_3Nu)]$, который быстро взаимодействует со вторым эквивалентом исходного комплекса с образованием гепта- (Nu = PPh₂) или гексафосфанового (Nu = NMe₂) биядерного комплекса (Схема 34).

Схема 34 – Реакционная способность комплексов Ni с *cyclo*-P₃ лигандом по отношению к нуклеофилам.

В совместной работе групп М. Капорали и Х. Груцмахера было описано формирование связей Р-Сl при реакции [Cp*RuCl(PCy₃)] с Р₄ [34] (Схема 35). Образующийся в ходе реакции комплекс [Cp*Ru(PCy₃)(µ₂,η²:η⁴-P₄Cl₂)RuCp*] был вовлечен в дальнейшую реакцию с BuLi, в ходе которой наблюдалось замена хлорных заместителей алкильной группой с образованием фрагментов Р-Bu в сложном тетраядерном комплексе [(Cp*Ru)₄(µ₃,η²:η²:η⁴-P₄-*n*-Bu₂)₂].

Схема 35 – Галогенирование и последующее алкилирование P₄ в координационной сфере Ru.

Недавно группой М. Шеера был предложен новый метод получения несимметричных фосфинов прямой функционализацией молекулы белого фосфора с использованием пентафосфаферроцена [Cp*Fe(η^5 -P₅)] [81] (Схема 36). Предложенный метод состоит из нескольких стадий. Первая стадия состоит из нуклеофильной функционализации одного из атомов фосфора фрагмента *cyclo*-P₅ с использованием литийорганических соединений R'Li (R' = Me, NMe₂, CH₂SiMe₃, 'Bu, Ph) с образованием комплекса [Cp*Fe(η^4 -P₅R')]. Дальнейшая реакция с электрофилами R''X (R'' = Me, ^{*i*}Pr; X = Br, I) приводит к повторной функционализации того же атома фосфора: $[Cp^*Fe(\eta^4-P_5R'R'')]$. Нуклеофильная функционализация последнего с использованием KBn (Bn = бензил), BuLi, MeLi приводит к высвобождению третичного фосфина PR'R''R''' и образованию комплекса $[Cp^*Fe(\eta^4-P_4)]^-$, который после взаимодействия с P₄ образует исходный комплекс $[Cp^*Fe(\eta^5-P_5)]$.

Схема 36 — Направленный синтез несимметричных фосфинов из P_4 с использованием комплекса [Cp*Fe(η^5 -P₅)].

На примере R' = Me, R'' = Me, R''' = Вп был проведен *one-pot* синтез фосфина PMe₂Bn в ходе циклического процесса (Схема 37).

Схема 37 – *One-pot* синтез фосфина PMe₂Bn в ходе циклического процесса.

В 2023 году той же группой авторов была опубликована работа, в которой описывалась функционализация пентафосфаферроцена [Cp*Fe(η⁴- P₅)]²⁻ реакцией с α,ω-дибромалканами [82]. Продуктами таких взаимодействий являются комплексы, в которых один атом фосфора профункционализирован, образуя спироциклические (P₅(CH₂)_n) лиганды (Схема 38).

Схема 38 – Функционализация комплекса $[Cp*Fe(\eta^4-P_5)]^{2-}$ реакцией с α, ω -дибромалканами.

Более того, дальнейшее взаимодействие образующихся комплексов с КВп или LiAlH₄ ведет к образованию третичных (Вп-замещенных) или вторичных (Р-Н) гетероциклических фосфорорганических продуктов (Схема 39).

Схема 39 — Взаимодействие $[Cp*Fe(\eta^4-P_5(CH_2)_n)]$ (n = 1-4) с KBn и LiAlH₄.

В 2019 году научными группами Я. Вайганда и Р. Вольфа было показано, что гетеробиметаллический Со-Ga комплекс с плоским тетрафосфорным [K(dme)₂{(^{Mes}BIAN)Co(μ , η^4 : κ^2 -P₄)Ga(nacnac)}] лигандом (dme = диметоксиэтан, ^{Mes}BIAN = бис(мезитилимино)аценафтендиимин; nacnac = 2,2,4,4-тетракис(2,6-диизопропиламино)пентан-3-ид анион) может быть использован в качестве прекурсора для получения алкил-замещенных пентафосфидных комплексов (Схема 40) [49]. Реакция с ^{*t*}BuPCl₂ дает комплекс с лигандом *cyclo*-P₅ [(^{Mes}BIAN)Co(μ - η^4 : η^1 -P₅^tBu)GaCl(nacnac)], в котором наблюдался перенос хлоридного заместителя с атома фосфора на атом галлия. Реакция с диалкилхлорфосфинами R_2PCl ($R = {}^{i}Pr$, Cy, ${}^{t}Bu$) приводит к образованию моноядерных *cyclo*-P₅R₂ комплексов кобальта [(^{Mes}BIAN)Co(η⁴*cyclo*-P₅R₂)], содержащих 1,1-диорганопентафосфидный лиганд. Интересно, что в случае использования ^{*i*}Pr₂PCl был зафиксирован интермедиат комплекс [(^{Mes}BIAN)Co(μ , η^4 : η^2 -P₅^{*i*}Pr₂)Ga(nacnac)].

Схема 40 – Функционализация фрагмента Р₄ в гетерометаллическом Со-Ga комплексе; [Co] = [CoBIAN], [Ga] = [Ga(nacnac)].

Позже теми же группами был описан высокоселективный процесс функционализации Р₄ в координационной сфере дииминного комплекса кобальта [50] (Схема 41а). Реакция [(PHDI)Co(η⁴-Р₄)]⁻ (PHDI = бис(2,6диизопропилфенил)фенантрен-9,10-диимин) с R_2PC1 (R = Cy, ^tBu, Ph, Mes, N(^{*i*}Pr)₂) приводит к количественному образованию нейтральных *cyclo*-P₅R₂ комплексов [(PHDI)Co(η⁴-P₅R₂)]. Дальнейшее взаимодействие полученных комплексов с цианидами дает интересные результаты. При R = Cy, 'Bu, Ph, N(ⁱPr)₂ реакция с двумя эквивалентами CN⁻ приводит к [3+2] фрагментации фосфорного лиганда с образованием анионного циано-циклотрифосфидного комплекса [(PHDI)Co(CN)(η^3 -P₃)]⁻ и 1-цианодифосфан-1-ид-анионов. Реакция [(PHDI)Co(η^4 -P₅Mes₂)] с одним эквивалентом CN^{-} приводит К перераспределению пентафосфорного лиганда в cyclo-P₄PMes₂ фрагмент в $[(PHDI)Co(\eta^3 - P_4PMes_2)(CN)]^-,$ составе комплекса что может свидетельствовать о том, что подобные комплексы могут образовываться в качестве интермедиатов в описанном выше процессе [3+2] фрагментации комплексов с менее объемными заместителями.

Схема 41 — Функционализация *cyclo*-P₄ лиганда диорганофосфинами RPCl₂ (а) и хлорангидридами карбоновых кислот (б) в координационной сфере комплекса Со и дальнейшие реакции с цианидами; $L_1 =$ бис(2,6-диизопропилфенил)фенантрен-9,10-диимин; $L_2 = 1,2$ -бис(2,6-бензгидрил-4-изопропилфенил)аценафтен диимин.

В работе 2023 недавней года описана электрофильная функционализация лиганда η^4 -P₄ комплекса [(Ar*BIAN)Co(η^4 -P₄)]⁻ (Ar* = 2,6бензгидрил-4-изопропилфенил, BIAN = 1,2-бис(арилимино)аценафтен диимин) взаимодействием с хлорангидридами карбоновых кислот (Схема 41б) [51]. Реакция протекает с образованием комплексов состава [(Ar*BIAN)Co(η⁴- $P_4C(O)R'$] (R' = 'Bu, Cy, 1-Ad, Ph), в которых реализуется образование новой связи Р-С. Более того, было показано, что добавление к комплексу $[(Ar*BIAN)Co(\eta^4-P_4C(O)Cy)]$ двух эквивалентов КСN приводит к [3+1] фрагментации тетрафосфорного остова высвобождением с фосфорганического продукта — ацилцианофосфанид-аниона.

1.3. Подходы к деметаллированию фосфорных соединений

Деметаллирование (декомплексация) соединений с фосфорсодержащими лигандами является одной из важнейших проблем не белого координационной химии фосфора, только но И всей фосфорорганической химии. На данный момент можно выделить целый пласт реакций, которые могут быть реализованы исключительно в координационной сфере переходных металлов. Деметаллирование образующихся в ходе таких реакций комплексов с фосфорорганическими лигандами — ключевое фосфорорганическим препятствие между исходным соединением И продуктом. Несмотря на высокую актуальность проблемы, в литературе известно крайне малое количество работ, направленных на ее решение. Поэтому обзор этой темы не будет ограничиваться лишь химией элементного фосфора, а будут более подробно раскрыты основные подходы К декомплексации соединений с фосфорными лигандами.

Можно выделить несколько подходов к декомплексации фосфорных соединений: галогенирование металлоцентра, лигандный обмен, окисление фосфорного центра и электрохимическая декомплексация.

51

1.3.1. Галогенирование металлоцентра

Изменение степени окисления металла в комплексе зачастую приводит к ослаблению связи между лигандом и комплексом. Одним из основных приемов декомплексации является окисление металлоцентра с применением галогенирующих агентов.

Впервые деметаллирование комплексов через галогенирование металлоцентра было описано для VI-группы на примере комплексов вольфрама с замещенными фосфирановыми и фосфиреновыми лигандами. В работах [83–85] описывается окисление W^0 до W^{+2} молекулярным иодом I₂, которое приводит к ослаблению связи P-W, а дальнейшее взаимодействие образующегося комплекса с N-метилимидазолом приводит к отщеплению фосфорсодержащего продукта (Схема 42).

Схема 42 – Декомплексация трехчленных фосфорсодержащих гетероциклов с применением I₂ в качестве окислителя.

В эту же группу можно добавить другой способ, связанный с использованием трибромида пиридиния в качестве галогенирующего агента, а для отщепления металла использовались 2,2'-бипиридин или N- метилимидазол (Схема 43) [86–89]. Основным недостатком этого способа является частичное окисление продукта реакции с образованием связей P-O или P=O.

Схема 43 – Декомплексация с использованием трибромида пиридиния в качестве окислителя.

1.3.2. Лигандный обмен

Вторая группа методов связана с реакцией лигандного обмена с использованием соединений, образующих более прочные комплексы с металлом.

1.3.2.1. Фосфиновые лиганды

Коммерчески доступные фосфиновые лиганды, такие как трифенилфосфин PPh₃ или 1,2-бис(дифенилфосфино)этан (dppe), показали свою эффективность при декомплексации комплексов молибдена и вольфрама с гетероциклическими фосфорсодержащими лигандами [90–92] (Схема 44).

Схема 44 – Применение dppe для декомплексации; Men = (-)ментил = 5метил-2-пропан-2-ил-циклогексил. В работе [89] описан интересный пример деметаллирования молибденового комплекса с циклическим фосфиновым лигандом 2-(2-ментил-2-фосфабицикло[2.2.1]гепт-5-ен-3-ил)пиридином (Men = (-)ментил = 5-метил-2-пропан-2-ил-циклогексил) под действием dppe (Схема 45). Несмотря на хелатный характер комплекса, свободный лиганд удалось выделить с высоким выходом.

Схема 45 – Декомплексация хелатного PN-лиганда с использованием dppe; Men = (-)ментил = 5-метил-2-пропан-2-ил-циклогексил.

Отмечается, что в данном случае хорошо поддаются декомплексации комплексы Мо. Более прочные вольфрамовые аналоги менее подвержены декомплексации dppe. Также следует отметить, что декомплексация фосфиранов требует более длительного нагревания смеси по сравнению с декомплексацией других циклических соединений фосфора.

В подтверждение этому можно привести в пример работу [93], где описывается декомплексация комплекса с Р-фенил-фосфа[7]триангуланом фосфиранового строения в качестве лиганда. Реакция с dppe проводилась при 150 °C в течение 48 часов (Схема 46).

Схема 46 – Применение dppe для деметаллирования комплекса с Рфенил-фосфа[7]триангулановым лигандом .

В работе [94] показано успешное деметаллирование комплексов молибдена с органическими лигандами Р(III) при взаимодействии комплексов с 2 экв. трифенилфосфина PPh₃ при нагревании от 120 °C до 165 °C и пониженном давлении (Схема 47). В таких условиях продукт декомплексации сразу удаляется из реакционной смеси.

Схема 47 – Применение PPh₃ для декомплексации.

Авторы считают, что на начальной стадии декомплексации происходит удаление СО из исходного комплекса, с образованием *цис-* и *транс*-комплексов [Mo(CO)₄(PPh₃)L] (L = MeP(OEt)(OH), MeP(OEt)(OMe), MeP(OEt)₂). При дальнейшем нагревании смеси до 165 °C происходит замещение лиганда еще одним эквивалентом Ph₃P.

1.3.2.2. Декомплексация под действием СО

Выделение металла из комплекса в виде его нативного соединения $M(CO)_6$ (M = Cr, Mo, W) под действием CO является интересным направлением в координационной химии подгруппы хрома. Первые попытки деметаллировать фосфиреновые комплексы под действием CO были неудачными вследствие протекания реакции по пути внедрения молекулы CO по связи P-C с образованием фосфорного аналога непредельного β -лактама (Схема 48) [86].

Схема 48 – Карбонилирование фосфиреновых комплексов при взаимодействии с СО.

Позже в работе [95] авторы показали, что модификация Мо-центра воздействием РМе₃ позволила получить фосфиреновые и фосфирановые комплексы, способные к деметаллированию под действием СО (25 бар) при 60 °C (Схема 49).

Схема 49 – Декомплексация трехчленных фосфорных гетероциклов с использованием СО.

Предполагаемый механизм реакции включает замещение гетероциклического лиганда молекулой растворителя (ТГФ) с образованием комплекса [Mo(CO)₄(PMe₃)(ТГФ)], который впоследствии взаимодействует с растворенным СО, образуя более стабильный пентакарбонильный комплекс [Mo(CO)₅(PMe₃)] (Схема 50). Авторы отмечают отсутствие протекания побочной реакции карбонилирования по связи Р-С. Это свидетельствует о том, что лиганд PMe₃ вносит вклад в ослабление связи между металлом и гетероциклом. Важно отметить, что выделения свободного PMe₃ не наблюдалось.

Схема 50 – Предположительный механизм декомплексации.

В статье [96] описывается результат взаимодействия норборнена с терминальным фосфиниденовым комплексом {MeP-W(CO)₅}, приводящего к образованию двух экзо-фосфиранов с *син-* и *анти-* расположением фрагмента

W(CO)₅ по отношению к мостиковому атому углерода норборнана (Схема 51). На основе анализа DFT-расчетов и кристаллических структур комплексов, авторы предсказывают, что фосфиран при *син*-изомере является более слабым акцептором для металлов в низкой степени окисления. Выдвинутые догадки подтверждаются селективной декомплексацией *син*-комплекса воздействием СО при давлении 50 бар и температуре 120°C.

Схема 51 – Селективная декомплексация с применением СО.

1.3.2.3. Цианидный метод

Найденные в литературе данные по декомплексации соединений с использованием цианидных солей говорят о высокой перспективности применения этих соединений для этих целей. В главе 1.2 обсуждалась фрагментация комплексов кобальта с полифосфорными лигандами при взаимодействии с органическими и неорганическими цианидами, позволяющая выделить 1-цианодифосфан-1-ид- и ацилцианофосфаниданионы (Схема 41) [50,51].

Благодаря образованию прочных цианидных комплексов с переходными металлами, данный метод может применяться для декомплексации хелатных фосфорных лигандов. Например, в работе [97] описывается декомплексация бифосфольного лиганда, образованного при димеризации 1-фенил-3,4диметилфосфола в координационной сфере Ni(+2). Свободный лиганд был выделен при воздействии избытка насыщенного водного раствора NaCN (Схема 52а). Тот же подход применялся в работе [98] для декомплексации тридентатного трифосфинового лиганда, образованного в ходе реакции [4+2] циклоприсоединения, промотированной солями Ni(+2) (Схема 526).

Схема 52 – Применение цианидов для декомплексации.

1.3.3. Окисление фосфорного центра

Третья группа включает в себя процессы, связанные с окислением лиганда. Описаны варианты с использованием триметиламиноксида (Me₃NO) [89,99,100] и молекулярной серы (S₈) [88] в качестве окислителей. В первом случае продуктами реакции являются фосфорильные соединения, в которых реализуются связи P=O; во втором случае тиофосфорильные соединения со связью P=S. Эти методы подходят для деметаллирования комплексов {P-Mo(CO)₅}, {P-W(CO)₅} и {P-Fe(CO)₄} (Схема 53).

Схема 53 – Примеры декомплексации с использованием Me₃NO и S₈.

1.3.4. Электрохимическая деметаллирование

Электрохимия является еще одним перспективным методом декомплексации. Несмотря на относительную простоту метода, в настоящий момент опубликована лишь одна работа по этому направлению [101], в которой описано исследование электрохимического восстановления ряда вольфрамовых комплексов фосфолов. Все исследованные комплексы имеют схожее электрохимическое поведение: во всех случаях наблюдается единственный двухэлектронный пик восстановления в области от –1.91 В до – 2.16 В (Таблица 1). Отмечено, что в этой же области проявляется двухэлектронный пик восстановления комплекса W(CO)₆ ($E_n^{socm} = -2.19$ В, $I_n^{socm} = -8.1$ мкА).

Таблица 1 – Потенциалы восстановления и величины тока пика восстановления комплексов замещенных фосфолов и продуктов их декомплексации.

Комплекс	E_n^{BOCM}, \mathbf{B}	$I_n^{\textit{вост}}$, мкА	Фосфол	E_n^{BOCM}, \mathbf{B}	$I_n^{\textit{вост}}$, мкА
	(комплекса)	(комплекса)		(фосфола)	(фосфола)
(OC)₅W Ph	-1.98	-6.5	Ph	-2.54	-5.5
(OC)₅W C≡C−Ph	-1.91	-6.0	P c≡c−Ph	-2.38	-4.3
(OC) ₅ W Ph	-2.16	-5.2	P Ph	н/д	н/д
(OC) ₅ W Me	-2.08	-6.5	P. Me	н/д	н/д

При проведении электрохимического восстановления авторы наблюдали в спектрах ЯМР ³¹Р образование свободного фосфола вследствие деметаллирования комплексов (Схема 54).

Схема 54 – Электрохимическая декомплексация замещенных фосфолов.

Главным условием применимости электрохимической декомплексации является электрохимическая инертность свободного лиганда при потенциале восстановления комплекса, а также отсутствие побочных реакций в условиях эксперимента. В данной работе важно подчеркнуть, что потенциалы восстановления свободных фосфолов находятся в существенно более катодной области, чем потенциалы восстановления соответствующего комплекса (Таблица 1). Другим недостатком электрохимического метода является затруднительное выделение продукта вследствие использования фонового электролита, что является общей проблемой препаративной электрохимии.

Заключение к литературному обзору

Комплексы переходных металлов VIII-Х групп являются перспективными платформами для изучения координационной химии белого фосфора. Описано богатое разнообразие различных фосфорсодержащих структурных мотивов, полученных при активации, деградации, агрегации и функционализации белого фосфора. Стабилизация таких структур достигается за счет ряда различных лигандов, таких как циклопентадиенильные производные, β-дикетиминатные лиганды, амиды, (хелатные) фосфины, *N*-

гетероциклические карбены и др. В комплексах металлов количество ядер фосфора в полифосфорном лиганде, образованном при реакции с Р₄, обычно определяется количеством электронов в металлоцентре. Однако электронные и стерические свойства вспомогательных лигандов могут значительно влиять на реакционную способность и структуру образующихся соединений. Такие особенности реакционной способности комплексов переходных металлов дают дополнительные, хотя все еще довольно ограниченные, детали о механизме внутрисферных трансформаций молекулы белого фосфора.

В настоящий момент координация и активация Р₄ комплексами переходных металлов является достаточно хорошо изученной областью, в то время как дальнейшая функционализация образующихся полифосфорных структурных фрагментов и декомплексация фосфорорганических продуктов изучены гораздо меньше и являются актуальными направлениями для дальнейших исследований. Основываясь на пионерских работах Д. Грина, П. Стоппиони И М. Перуццини 70x-80x годов прошлого века, металлокомплексная функционализация белого фосфора получила развитие в качестве самостоятельного направления в последние десятилетия. Научные группы со всего мира внесли свой вклад в развитие этой области науки, продемонстрировав синтетический потенциал функционализации Р₄ для получения разнообразных и ранее неизвестных соединений фосфора. На настоящее время нейтральные комплексы находят большее применение для функционализации Р₄ по сравнению с ионными. Однако для заряженных систем анионные комплексы в целом оказались более удобными платформами для функционализации, чем катионные. Это может быть связано с тем, что наиболее используемыми реагентами для функционализации Р₄ являются электрофилы. Атака на нуклеофильные фосфорные центры зачастую сопровождается отщеплением галогенид-ионов, что обеспечивает движущую силу таких реакций. Реакции гидролиза, окисления, циклоприсоединения, а также реакции с нуклеофилами встречаются значительно реже.

Металлокомплексная функционализация белого фосфора позволила выделить большое разнообразие интересных моно- и олигофосфорных комплексов. Однако высвобождение этих фосфорсодержащих продуктов из координационной сферы металлов является чрезвычайно сложной задачей и на данный момент крайне редко достигалось. Стоит отметить, что функционализация Р₄ в достаточной мере описана для комплексов как ранних переходных металлов, так и для поздних, однако декомплексация фосфорсодержащих продуктов в основном наблюдалась для комплексов ранних переходных металлов. Данный факт можно связать с более высокой оксофильностью этих металлов, что можно использовать для деметаллирования лиганда путем реакций с окислителями.

2. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

2.1. Активация молекулы белого фосфора в координационной сфере комплексов кобальта с PNP лигандами

Как показано в литературном обзоре, реакционная способность комплексов подгруппы кобальта с дифосфиновыми РСР лигандами по отношению к белому фосфору хорошо изучена. Раннее, в середине 80-х годов, группой С. Мидоллини был описан интересный пример высокоселективной и, что немаловажно, количественной активации белого φοςφορα, В координационной сфере кобальта комплекса с лигандом 1,1-бис(дифенилфосфино)метаном (dppm) [Co(Ph₂PCH₂P(Ph)₂PPPPP(Ph)₂CH₂PPh₂)]BF₄ (**1**) (Рисунок 4) [42, 43]. Изучение механизма этой реакции представляет большой интерес, т.к. реакция сопровождается не только раскрытием тетраэдра белого фосфора в зигзагообразный тетрафосфорный фрагмент, но и функционализацией терминальных атомов фосфора с образованием новых связей Р-Р.

Пролить свет на механизм этой реакции позволил результат более поздней работы нашей научной группы в сотрудничестве с группой М. Перуццини, в которой была исследована активация молекулы белого фосфора в координационной сфере комплексов Rh и Ir с лигандом dppm [56]. Проведение реакции при комнатной температуре ведет к образованию комплексов [M(dppm)(Ph₂PCH₂PPh₂PPPP)]⁺ (M = Rh (**2a**), Ir (**26**)) (Рисунок 4). В этих комплексах реализуется новая топология P₄, в которой циклический P₃ фрагмент связан с профункционализированным атомом фосфора. Такое строение лиганда может рассматриваться в качестве интермедиата процесса активации и трансформации белого фосфора, ведущего к зигзагообразному лиганду в комплексе **1**. Более того, низкотемпературные исследования этой реакции с использованием [Ir(dppm)₂]⁺ в качестве реагента позволили выделить другой интермедиат этого процесса — комплекс [Ir(dppm)₂(η^2 -P₄)]⁺

(3) (Рисунок 4), в котором реализуется η²-координация молекулы белого фосфора, раскрытого в виде «бабочки».

Рисунок 4 – Обзор продуктов активации P₄ в координационной сфере комплексов Co, Rh и Ir.

Основной идеей настоящей работы является замена лиганда РСР типа (dppm), применяемого в вышеупомянутых работах, на лиганды PNP типа. Кроме коммерческой доступности и простоты синтеза, лиганды PNP типа также известны своей способностью «настраивать» свойства конечного соединения путем варьирования заместителей у атомов азота и фосфора лиганда [102–110]. Кроме этого, важно отметить, что PNP лиганды, будучи амино аналогами dppm, образуют комплексы с высоким угловым напряжением в четырехчленном цикле, что, в свою очередь, сыграло ключевую роль в образовании комплекса **1**. Эти факторы послужили основой для изучения процесса активации P₄ в координационной сфере комплексов кобальта с PNP лигандами.

2.1.1. Синтез PNP лигандов

В рамках данной работы были получены лиганды PNP типа, содержащие (Схема 55). N, Nразличные заместители при атоме азота бис(дифенилфосфино)амин *N*,*N*–бис(дифенилфосфино)метиламин (dppa), (dppa^{Me}), *N*,*N*–бис(дифенилфосфино)анилин (dppa^{Ph}) были получены согласно ранее опубликованным методикам [111–113]. Неописанный ранее лиганд N, N-(dppa^{MeOBn}) бис(дифенилфосфино)(2-метоксибензил)амин был получен реакцией дифенилхлорфосфина с 2-метоксибензиламином в присутствии триэтиламина (Схема 55) и охарактеризован методами ЯМР-спектроскопии, элементного и рентгеноструктурного анализа (Рисунок 5).

N,N-бис(дифенилфосфино)амин (dppa)

N,N-бис(дифенилфосфино)метиламин (**dppa^{Me}**)

N,N-бис(дифенилфосфино)анилин (**dppa^{Ph}**)

Схема 55 – Синтез лигандов dppa, dppa^{Me}, dppa^{Ph} и dppa^{MeOBn}.

Рисунок 5 – Молекулярная структура *N*,*N*-бис(дифенилфосфино)(2метоксибензил)амина (dppa^{MeOBn}). Эллипсоиды теплового смещения показаны с 50% вероятностью. Атомы водорода не показаны, атомы углерода не подписаны.

Исследуемые PNP лиганды существенно отличаются от PCP лиганда dppm по своим электронным свойствам, обусловленным наличием более электроотрицательного атома азота, и структуре. Например, угол P-N-P в этих лигандах значительно больше (113.4° – 120.2°) угла P-C-P в dppm (106.4°). Более того, наличие лабильной связи N-H в составе лиганда dppa открывает возможности для проведения реакций с участием N-H кислотного центра. Полученные лиганды далее были использованы для изучения реакционной способности комплексов кобальта на их основе по отношению к молекуле белого фосфора.

2.1.2. Исследование реакционной способности комплексов кобальта с PNP лигандами по отношению к молекуле белого фосфора

Было найдено, $Co(BF_4)_2 \times 6H_2O$, N.Nчто нагревание смеси бис(дифенилфосфино)амина (dppa) и P₄ в ТГФ/BuOH приводит к количественной конверсии реагентов образованием с комплекса $[Co(Ph_2PNHP(Ph_2)PPPPP(Ph_2)]BF_4$ (4) (³¹Р ЯМР-мониторинг) (Схема 56) [114]. Медленное концентрирование раствора позволило выделить продукт в виде красных кристаллов с высоким выходом (до 84%).

Схема 56 – Активация Р₄ комплексом Со с лигандом dppa.

Молекулярная структура **4** схожа со структурой известного комплекса $[Co(Ph_2PCH_2P(Ph)_2PPPP(Ph)_2CH_2PPh_2)]BF_4$ (**1**), ввиду наличия аналогичного зигзагообразного фрагмента PPPP (Рисунок 6). Сравнительный анализ структур комплексов **4** и **1** показал уменьшение длин связей $Co-P_2$ (2.166 Å) и $Co-P_4$ (2.167 Å) по сравнению с соответствующими связями Co-dppm аналога (2.197 Å и 2.202 Å), а также уменьшение связей P_1-P_5 (2.187 Å против 2.197 Å) и P_3-P_8 (2.174 Å против 2.183 Å).

Геометрия PNP фрагментов в комплексе **4** теряет свою симметричность, претерпевая значительные изменения в длинах связей. Связи P_2 - N_1 (1.719 Å) и P_4 - N_2 (1.718 Å) оказались длиннее связей P-N в свободном лиганде (1.692 Å). А связи P_1 - N_1 (1.655 Å) и P_3 - N_2 (1.645 Å) оказались, напротив, короче.

Рисунок 6 – Молекулярная структура комплекса 4. Показаны только ипсо-атомы углерода и N-H атомы водорода, остальные атомы углерода и водорода, BF_4^- ион и молекулы растворителя не представлены для ясности. Выделенные длины связей (Å) и углы (°): P_1 - N_1 1.655, P_2 - N_1 1.719, P_3 - N_2 1.645, P_4 - N_2 1.718, P_1 - P_5 2.187, P_3 - P_8 2.174, P_5 - P_6 2.177, P_6 - P_7 2.201, P_7 - P_8 2.183, Co- P_2 2.166, Co- P_4 2.167, Co- P_5 2.248, Co- P_6 2.276, Co- P_7 2.277, Co- P_8 2.265, P_1 - N_1 - P_2 119.92, P_3 - N_2 - P_4 120.78.

Для исследования влияния заместителя у атома азота PNP лиганда на процесс активации молекулы белого фосфора были проведены реакции с использованием *N*,*N*–бис(дифенилфосфино)метиламина (dppa^{Me}), *N*,*N*– бис(дифенилфосфино)анилина (dppa^{Ph}) или *N*,*N*–бис(дифенилфосфино)(2метоксибензил)амина (dppa^{MeOBn}) в качестве лиганда. Продуктами таких взаимодействий явились комплексы состава [Co(dppa^R)₂(η¹-P₄)]BF₄ (5-7) (dppa^R = dppa^{Me}, dppa^{Ph}, dppa^{MeOBn}) с η¹-координированной интактной молекулой белого фосфора в качестве лиганда (Схема 57).

Схема 57 – Активация Р₄ комплексами Со с лигандами dppa^R.

Образование комплекса [Co(dppa^{Me})₂(η^1 -P₄)]BF₄ (**5**) было зафиксировано методами ³¹Р ЯМР-спектроскопии и масс-спектрометрии с ионизацией распылением в электрическом поле (ESI-MS). Комплексы [Co(dppa^{Ph})₂(η^1 -P₄)]BF₄ (**6**) и [Co(dppa^{MeOBn})₂(η^1 -P₄)]BF₄ (**7**) были выделены в твердом виде с выходами 28% и 24% соответственно и охарактеризованы спектроскопическими методами. Структура комплекса **6** была установлена на основании данных РСА (Рисунок 7). Коричневые кристаллы соединения **6**, пригодные для кристаллографического анализа, были получены медленным концентрированием реакционной смеси.

Рисунок 7 – Молекулярная структура комплекса 6. Эллипсоиды теплового смещения показаны с 50% вероятностью. Показаны только *unco*атомы углерода; остальные атомы углерода, атомы водорода и BF₄⁻ ион не представлены для ясности. Выделенные длины связей (Å) и углы (°): P_1 - N_1 1.709, P_2 - N_1 1.722, Co- P_1 2.178, Co- P_2 2.195, P_3 - N_2 1.729, P_4 - N_2 1.709, Co- P_3 2.189, Co- P_4 2.176, Co- P_5 2.171, P_5 - P_6 2.173, P_5 - P_7 2.182, P_5 - P_8 2.172, P_6 - P_7 2.193, P_6 - P_8 2.208, P_7 - P_8 2.210, P_1 - N_1 - P_2 97.74, P_3 - N_2 - P_4 97.16.

Комплекс **6** является первым примером структурно охарактеризованного комплекса кобальта с η^1 -координированной молекулой белого фосфора. Молекулярная структура **6** имеет искаженную тетрагональнопирамидальную геометрию (Рисунок 7). Длины связей Р-N (1.709 – 1.729 Å) близки к значениям для свободного лиганда (1.732 Å). Углы Р-N-Р в структуре **6** (97.74° и 97.16°) ожидаемо меньше (113.38° в свободном dppa^{Ph}) вследствие высокого углового напряжения четырехчленного цикла. Значения длин связей Р-Р близки к значениям для свободной молекулы Р₄, связи *P*₅-*P*₆₋₈ незначительно короче из-за влияния связи *Co-P*₅.

³¹Р ЯМР-спектры комплексов **5-7** содержат AM_3X_4 спиновую систему, где A (уш. кв, $\delta = -370.2 - -366.2$ м.д.) относится к атому фосфора, η^1 координированному к атому металла, M (д, $\delta = -488.6 - -477.5$ м.д.) относятся к некоординированным атомам P₄ и X (уш. с, $\delta = 85.8 - 89.4$ м.д.) — атомам фосфора PNP лигандов. Константа спин-спинового взаимодействия ¹J_{AM} практически идентична для комплексов **5-7** и варьируется в области 234 – 237 Гц. На рисунке 8 приведен ³¹P{¹H} ЯМР-спектр комплекса **7**. Спектры ³¹Р{¹H} для комплексов **5** и **6** схожи (Рисунки А7 и А8). Комплексы **6** и **7** оказались нестабильны и подвергаются частичному разложению при повторном растворении с образованием комплекса $[Co(dppa^R)_2]^+$ и свободного Р₄ (Рисунок 8). По этой же причине получение адекватных ¹H и ¹³C ЯМР-спектров не представляется возможным.

Рисунок 8 – ${}^{31}P{}^{1}H$ ЯМР-спектр (161.9 MHz, 294 K, CD₃CN) комплекса 7, ${}^{*}P_{4}$, ${}^{\circ}P$ атомы фосфора PNP лигандов комплекса [Co(dppa^{MeOBn})₂]⁺.

Полученные результаты подчеркивают ключевую роль наличия N-H связи в составе PNP лиганда для протекания процесса трансформации молекулы белого фосфора в координационной сфере комплексов кобальта. А также указывают на то, что механизм такой трансформации включает в себя стадию образования интермедиата с лигандом η¹-P₄.

2.1.3. Исследование строения продуктов активации белого фосфора комплексами кобальта с PNP лигандами

Исследование электронной структуры, определение природы и типа связей в лигандах, а также формальной степени окисления металлоцентра в полученных комплексах является актуальной проблемой и играет ключевую роль в определении механизма реакций. Определение этих параметров для комплекса **4** представляет особую задачу ввиду сложности его структуры и требует отдельного обсуждения.

Исходя из изоструктурности комплексов 1 и 4, можно предположить и схожесть их электронных структур. Как было показано в литературном обзоре, для комплекса 1 авторами было предложено три возможных варианта реализации степени окисления кобальта Co(-1), Co(+1) и Co(+3), каждому из которых соответствует своя резонансная структура лиганда (Рисунок 9). Авторы провели анализ молекулярной структуры комплекса 1 и, исходя из того, что центральная связь Р-Р в лиганде оказалась немного длиннее соседних, пришли к выводу, что в комплексе 1 реализуется степень окисления Со(-1) и дикатионный лиганд, содержащий тетрафосфабутадиеновый фрагмент. Подобный вывод вызывает определенные сомнения. К сожалению, плохое разрешение ³¹Р ЯМР-спектров не позволяет определить характер связей в лиганде. Более того, реализация степени окисления металла Со (-1) должна характеризоваться склонностью комплекса 1 к окислению, что не подтвердилось ни на практике (комплекс стабилен на воздухе), ни проведении электрохимических экспериментально при исследований (электрохимические свойства комплекса 1 будут дополнительно обсуждены в главе 2.2.2.). Поэтому в рамках данной работы был проведен детальный анализ строения полученных продуктов активации Р₄.

Рисунок 9 – Возможные резонансные структуры лиганда Ph₂PCH₂P(Ph₂)PPPPP(Ph₂)CH₂PPh₂ в комплексе **1**.

Исследования спектроскопии электронного парамагнитного резонанса (ЭПР) комплекса **4** в твердой фазе показали диамагнитную природу комплекса с тремя возможными вариантами степени окисления Со (– 1, +1 и +3). Для

каждого из этих случаев общий +1 заряд комплекса определяет распределение заряда в P₈-лиганде. Возможные резонансные структуры лиганда Ph₂PNHP(Ph₂)PPPPP(Ph₂)NHPPh₂ показаны на рисунке 10.

Рисунок 10 – Возможные резонансные структуры Р₈-лиганда.

С целью определения типа связи в лиганде был проведен анализ молекулярной структуры комплекса **4** (Рисунок 5). Значения связей P-P тетрафосфорного фрагмента в комплексе **4** немного отличаются. Связи P_5 - P_6 и P_7 - P_8 (2.177 Å и 2.183 Å) оказались короче центральной связи P_6 - P_7 (2.201 Å). Однако все эти значения значительно отличаются от среднего значения длин двойной связи P=P в дифосфеновых комплексах (2.02 Å) [115].

³¹Р ЯМР-спектр комплекса **4** хорошо согласуется с кристаллической структурой и содержит четыре группы сигналов, которые могут быть охарактеризованы как AA'MM'XX'ZZ' спиновая система (Рисунок 11). Значения констант спин-спинового взаимодействия ${}^{1}J_{P5-P6}$ и ${}^{1}J_{P7-P8}$ (220 Гц) находятся в области значений ${}^{1}J_{P-P}$ констант в дифосфанах [116] и значительно отличаются от ${}^{1}J_{P=P}$ констант в дифосфеновых комплексах [115].

Рисунок 11 – ³¹Р{¹H} (161.9 MHz, 294 K, CD₂Cl₂) ЯМР-спектр комплекса 4.

Геометрия комплекса **4**, оптимизированная с использованием теории функционала плотности (DFT)¹, воспроизводит все структурные особенности кристаллографически полученной структуры (Рисунок 12, Таблица 2). Согласно расчетам, структура изолированной молекулы характеризуется менее сжатым и более симметричным остовом (Таблица 2). Важно заметить, что значения длин связей P-P для DFT-оптимизированной структуры комплекса находятся в пределах значений, характерных для одинарной связи P-P. Различия в кристаллографической и DFT-оптимизированной геометриях комплекса могут быть обусловлены эффектами кристаллической упаковки.

¹ Квантово-химические расчеты выполнены д.х.н., проф. Зуевой Екатериной Михайловной

Рисунок 12 – Кристаллографически определенная (а) и DFTоптимизированная (б) структуры комплекса 4.

Таблица 2 – Выбранные структурные параметры (длины связей в Å, торсионные углы в °) комплекса 4.

Параметр	Кристаллографическая геометрия комплекса 4	DFT-оптимизированная геометрия комплекса 4			
Co–P ₂	2.167	2.176			
Co–P ₄	2.166	2.177			
Co-P5	2.265	2.295			
Co–P ₈	2.248	2.294			
Co-P ₆	2.277	2.306			
Co–P ₇	2.276	2.305			
$P_1 - P_5$	2.187	2.215			
P ₃ –P ₈	2.174	2.214			
P ₅ –P ₆	2.177	2.222			
$P_7 - P_8$	2.183	2.223			
$P_6 - P_7$	2.201	2.238			
P5-P6-P7-P8	119.7	120.2			

Чтобы получить больше информации об электронной структуре комплекса **4**, были рассчитаны локализованные натуральные молекулярные орбитали (ЛНМО) с использованием кристаллографически полученной и DFT-оптимизированной структур. Полученные ЛНМО однозначно указывают

на то, что соединение **4** является комплексом Co(+3) с дианионным лигандом **C** (Рисунок 10), содержащим крайне редкую тетрафосфинидную цепь. Приведенные на рисунке 13 ЛНМО наглядно подтверждают сказанное: шесть ЛНМО соответствуют σ-связям Co-P, пять — σ-связям P-P, четыре — неподеленным электронным парам (НЭП) на атомах фосфора фрагмента *PPPP* и три — 3d-орбиталям Co.

Рисунок 13 – Выбранные дважды занятые ЛНМО комплекса **4**, рассчитанные с использованием его кристаллографической геометрии.

DFT расчеты также показали, что геометрические особенности зигзагообразной цепи P₄^{4–} координированного лиганда сохраняются в DFTоптимизированной структуре свободного (некоординированного) лиганда (Рисунок 14, Таблица 3). Любопытно заметить, что фрагмент -P⁽⁻⁾-P⁽⁻⁾-P⁽⁻⁾-P⁽⁻⁾лиганда изоэлектронен зигзагообразной цепи элементной серы, которой свойственно образование одинарной связи -S-S- вместо двойной S=S.

Рисунок 14 – DFT-оптимизированная структура свободного лиганда С.

Таблица 3 – Выбранные структурные параметры (длины связей в Å, торсионные углы в °) комплекса 4 и дианионного лиганда С.

Параметр	Кристаллографическая геометрия комплекса 4	DFT-оптимизированная геометрия свободного лиганда С			
Co–P ₂	2.167				
Co–P ₄	2.166				
Co-P ₅	2.265				
Co–P8	2.248				
Co–P ₆	2.277				
Co-P ₇	2.276				
$P_1 - P_5$	2.187	2.115			
P ₃ –P ₈	2.174	2.115			
P ₅ –P ₆	2.177	2.210			
P7–P8	2.183	2.210			
P ₆ –P ₇	2.201	2.168			
P5-P6-P7-P8	119.7	150.4			

Исходя из диамагнитной природы комплексов **5-7**, можно предположить, что в них реализуется степень окисления Со (+1). Набор ЛНМО, полученный для одного из этих комплексов (**6**), подтверждает это утверждение². В полученном наборе четыре ЛНМО представляют собой дважды занятые 3d-орбитали кобальта (Рисунок 15).

² Квантово-химические расчеты выполнены д.х.н., проф. Зуевой Екатериной Михайловной

Рисунок 15 – Выбранные дважды занятые ЛНМО комплекса 6, полученные с использованием его кристаллографической геометрии.

С целью определения структурных особенностей комплекса $[Co(dppa^{Ph})_2(\eta^1-P_4)]BF_4$ (6), был проведен синтез его прекурсора, не содержащего лиганд P_4 .

Взаимодействие Co(BF₄)₂×6H₂O с *N*,*N*-бис(дифенилфосфино)анилином (dppa^{Ph}), в мольном соотношении 1:2 в CH₃CN приводит к количественной конверсии исходных соединений с образованием комплекса $[Co(dppa^{Ph})_2(CH_3CN)_2](BF_4)_2$ (8) (Схема 58) [117]. Зеленые кристаллы продукта были выделены медленным концентрированием раствора в токе азота с выходом 91%. Комплекс 8 охарактеризован методами PCA, ESI-MS и элементного анализа.

77

Схема 58 – Синтез комплекса 8.

Молекулярная структура комплекса 8 представлена на рисунке 16а.

Рисунок 16 — Молекулярные структуры комплексов 8 (а) и 6 (б). Эллипсоиды теплового смещения показаны с 50% вероятностью. Атомы водорода, противоион и молекулы растворителя не представлены для ясности. Атомы углерода не подписаны. Значения выделенных длин связей [Å] и углов [°] для комплекса 8: P_1 -Co 2.259, P_2 -Co 2.246, P_1 - N_1 1.715, P_2 - N_1 1.710, N_2 -Co 2.208, N_3 -Co 2.169, P_1 - N_1 - P_2 101.02, P_1 -Co- P_2 71.85.

Комплекс **8** в кристалле имеет октаэдрическую геометрию, образованную путем координации двух dppa^{Ph} лигандов и двух молекул CH₃CN к атому Co. Атомы фосфора PNP лигандов лежат в экваториальной плоскости, значения углов P-Co-N близки к 90°, что указывает на незначительное искажение структуры. Длины связей P-N в PNP лигандах комплекса **8** (1.710 и 1.715 Å) близки к значениям соответствующих связей в свободном dppa^{Ph} (1.732 Å). Угол P-N-P (101.02°) претерпевает значительное искажение со свободным лигандом (113.38°) вследствие высокого углового напряжения в четырехчленном фрагменте комплекса.

Важно отметить влияние лигандов CH₃CN на стабильность комплекса **8** в твердом виде. Октаэдрическое окружение комплекса **8** позволяет выделить стабильные в твердом виде кристаллы, в то время как кристаллизация из других слабокоординирующихся растворителей, например из смеси $T\Gamma\Phi$ /BuOH, оказалась неудачной. Этот факт может быть связан с образованием нестабильного в твердом виде плоскоквадратного комплекса [Co(dppa^{Ph})₂]²⁺. Подобное наблюдалось ранее для аналогичных комплексов кобальта с PCP лигандом 1,1-бис(дифенилфосфино)метаном (dppm) [43].

Сравнительный анализ кристаллических структур комплексов 6 и 8 позволяет выделить несколько отличий (Рисунок 16). Наиболее значительным является координационная ненасыщенность центрального атома в комплексе $[Co(dppa^{Ph})_2(\eta^1 - P_4)]BF_4$ (6), образованного путем координации четырех атомов фосфора лигандов dppa^{Ph} и одного атома фосфора η¹-координированной молекулы P₄. Координация второй молекулы P₄ по η¹-типу затруднена ввиду стерической нагрузки, создаваемой лигандным окружением высокой комплекса. Об этом свидетельствует значительное отклонение геометрии комплекса [Co(dppa^{Ph})₂(η¹-Р₄)]BF₄ от квадратно-пирамидальной (значения углов *P*₅-*Co*-*P* варьируются от 96.64° до 104.69°). Несмотря на известный пример октаэдрического комплекса $[Ir(dppm)_2(\eta^2 - P_4)]^+$ (3), содержащего в координационной сфере два РСР лиганда dppm и молекулу белого фосфора, скоординированного по η²-типу (по типу «бабочки») [56, 118], реализация такой координации P₄ для комплексов Со с лигандом dppa^R затруднена вследствие введения в состав PNP лиганда стерически объемного заместителя у атома азота. В результате, лиганд dppa^R становится менее гибким по сравнению с dppa, поэтому искажения, сопровождающие все возможные внутрисферные превращения комплекса [Co(dppa^{Ph})₂(η¹-P₄)]BF₄, порождают высоконапряженные структуры и поэтому кинетически блокируются. Реализация октаэдрического лигандного окружения комплекса 8 связана с меньшими размерами и более высокими электронодонорными свойствами аксиальных лигандов CH₃CN.

Важно отметить различие формальной степени окисления атома кобальта в комплексах **8** (Co(+2)) и **6** (Co(+1)). Такое различие может говорить о высокой роли растворителя на протекание реакции с P₄: использование спиртов в качестве растворителей зачастую приводит к продуктам восстановления металлоцентров в комплексах переходных металлов. Действительно, проведение реакции в смеси CH₃CN/TГФ с белым фосфором не ведет к образованию комплекса **6**, а приводит к исключительному образованию комплекса **8**.

Другой интересной особенностью комплекса $[Co(dppa^{Ph})_2(\eta^1-P_4)]BF_4$ (6) является разная ориентация фенильных заместителей у атомов фосфора лигандов dppa^{Ph}. Из молекулярной структуры можно заметить, что Phзаместители, находящиеся вблизи координированной молекулы P₄, направлены в ее сторону, что может говорить о дополнительной стабилизации лиганда P₄ за счет нековалентных взаимодействий НЭП атомов фосфора с π системой фенильных колец. Ориентация фенильных колец в кристаллической структуре комплекса **8** свидетельствует о возможных нековалентных π - π взаимодействиях соседних Ph-фрагментов лигандов.

2.1.4. Исследование механизма трансформации молекулы белого фосфора в координационной сфере комплексов кобальта.

Активация молекулы белого фосфора в координационной сфере переходных металлов зачастую сопровождается многостадийными трансформациями Р₄, протекающими с разрывом одной или нескольких связей P-P. Изучение механизма таких трансформаций усложняется в силу недостаточности информации о возможных интермедиатах реакции, поэтому установление структуры и свойств промежуточных продуктов активации белого фосфора представляет большой фундаментальный интерес.

На данный момент в работах по активации молекулы белого фосфора в координационной сфере комплексов подгруппы кобальта с дифосфиновыми

РСР и PNP лигандами установлен ряд структурно охарактеризованных интермедиатов и конечных продуктов этого процесса (Рисунок 17).

Рисунок 17 – Продукты активации Р₄ в координационной сфере комплексов подгруппы кобальта.

Ввиду изоструктурности комплексов 1 и 4 можно предположить, что реакции образования этих комплексов протекают по схожему механизму, а процессы раскрытия и изомеризации тетраэдра Р₄ в координационной сфере кобальта мало зависят от природы вспомогательного (dppm или dppa) лиганда. Как отмечено выше, комплексы 2а и 26 могут рассматриваться в качестве фосфора, интермедиатов процесса активации белого ведущего К зигзагообразному лиганду $\{Ph_2PCH_2P(Ph)_2PPPPP(Ph)_2CH_2PPh_2\}$ в комплексе **1**. Действительно, разрыв одной из связей Р-Р в трициклическом фрагменте лиганда в комплексе 2 с последующей атакой атома фосфора хелатирующего лиганда dppm может привести к полной катенации олигофосфорного фрагмента в лиганд $\{Ph_2PCH_2P(Ph)_2PPPPP(Ph)_2CH_2PPh_2\}$, реализующийся в комплексе 1. Комплекс с лигандом схожей топологии может рассматриваться в качестве промежуточного продукта процесса активации белого фосфора в координационной сфере кобальта с PNP лигандом dppa. Более того, полученные в рамках настоящего исследования комплексы [Co(dppa^R)₂(η¹-P₄)]BF₄ (5-7) являются ключевым звеном для описания механизма реакции, позволяющим предложить образование интермедиата с лигандом η¹-Р₄ на первой стадии.

Первое описание механизма реакции для этих систем было предложено В. Шеллером в 2011 году на основании квантово-химических расчетов реакции комплекса [Rh(dppm)₂]⁺ с белым фосфором [119]. Для упрощения вычислений Ph-заместители в лиганде dppm были заменены на атомы водорода. Автором был систематизирован набор возможных интермедиатов процесса и рассчитан энергетический профиль реакции, приводящий к образованию продукта **Rh-6** (Рисунок 18).

Интерпретация результатов квантово-химических расчетов применительно к комплексу $[Rh(dppm)_2]^+$ позволяет предположить, что наиболее предпочтительным путем реакции с P₄ является образование катионного комплекса $[Rh(dppm)_2(\eta^1-P_4)]^+$, содержащего в лигандном окружении тетраэдр P₄, скоординированный одним атомом фосфора к металлу. Далее реакция протекает по двум конкурирующим путям. Первый путь осуществляется в четыре стадии (диссоциация одного PPh₂ фрагмента

лиганда, ступенчатая изомеризация лиганда Р₄ и координирование лиганда к трансформированному фрагменту Р₄, сопровождающаяся расширением цикла) и приводит к образованию продукта [Rh(dppm)(Ph₂PCH₂PPh₂PPPP)]⁺ (2а на Рисунке 17 или Rh-6 на Рисунке 18). Второй путь представляет собой одностадийное превращение, продуктом которого является комплекс $[Rh(dppm)_2(\eta^2 - P_4)]^+$, содержащий раскрытый по типу «бабочки» тетраэдр P_4 (**Rh-2** на Рисунке 18). Первый путь является основным в случае проведения реакции в термодинамически контролируемом режиме, поскольку его первая стадия характеризуется высоким активационным барьером, а конечный продукт является термодинамически более устойчивым. Второй путь имеет более низкий активационный барьер, приводит к термодинамически менее устойчивому продукту и поэтому является основным В условиях кинетического контроля. Это заключение хорошо согласуется с экспериментальными данными для реакции с комплексом иридия: проведение реакции при -20 °С дает продукт $[Ir(dppm)_2(\eta^2 - P_4)]^+$ (3 на рисунке 17).

На основе этих данных нами был предложен следующий механизм трансформации молекулы белого фосфора в координационной сфере комплексов кобальта, стабилизированных дифосфиновым PNP лигандом dppa (Рисунок 19). Механизм был обоснован с использованием DFT расчетов в рамках вычислительной процедуры B3LYP-D3(BJ)/LANL2DZ.³

³ Квантово-химические расчеты выполнены д.х.н., проф. Зуевой Екатериной Михайловной

Рисунок 19 – Предложенный механизм трансформации P₄ в координационной сфере комплексов кобальта с PNP лигандами. В скобках приведены структуры найденных переходных состояний.

На первой стадии образуется тетрагонально-пирамидальный комплекс $[Co(dppa)_2(\eta^1 - P_4)]^+$, который далее трансформируется в химически более активную тригонально-бипирамидальную форму. На следующей стадии происходит образование комплекса $[Co(dppa)_2(\eta^2 - P_4)]^+$, изоструктурного комплексу иридия 3, в котором молекула P₄ раскрыта по типу «бабочки». Следующая стадия связана с диссоциацией одного из фосфорных фрагментов лиганда dppa. Важно заметить, что гемилабильность PNP лигандов была ранее описана для комплексов железа, что косвенно подтверждает возможность такой диссоциации [120]. Далее происходит сложная перегруппировка, включающая изомеризацию скоординированной молекулы белого фосфора с образованием лиганда η^3 -P₄ и атаку одного из его атомов на атом фосфора лиганда dppa, в результате которой образуется связь P-P с одновременной диссоциацией функционализированного атома фосфора, а второй атом фосфора лиганда dppa возвращается в координационную сферу. В конечном итоге образуется комплекс $[Co(dppa)(Ph_2PNHPPh_2PPPP)]^+,$ который изоструктурен комплексам 2а и 26. Диссоциация одного из атомов фосфора

84

второго лиганда dppa с последующим образованием связи P-P с одним из атомов фосфора полифосфорного лиганда приводит к продукту полного раскрытия тетрафосфорного фрагмента лиганда в зигзагообразную цепь. DFTоптимизированные структуры интермедиатов и переходных состояний приведены в приложении A (Таблица A1).

Таким образом, комплексы кобальта с PNP лигандами успешно инициируют процесс активации белого фосфора. Использование dppa в качестве лиганда образованию приводит к комплекса $[Co(Ph_2PNHP(Ph_2)PPPPP(Ph_2)NHPPh_2)]BF_4$ (4) в качестве единственного продукта. Молекулярная структура 4 содержит интересный зигзагообразный тетрафосфорный фрагмент. DFT-анализ электронной структуры показал, что металлоцентр претерпевает окисление Co(+1)–Co(+3) в ходе реакции с белым фосфором, а тетраэдр белого фосфора раскрывается в P₄⁴⁻ фрагмент с угловой конфигурацией. Замена заместителя при атоме азота PNP лиганда значительно влияет на процесс активации молекулы белого фосфора комплексами кобальта. Использование dppa^{Me}, dppa^{Ph}, и dppa^{MeOBn} в качестве лиганда приводит к образованию комплексов типа $[Co(dppa^R)_2(\eta^1-P_4)]BF_4$ (dppa^R = dppa^{Me} (5), dppa^{Ph} (6), dppa^{MeOBn} (7)), в которых реализуется η^1 -координация интактной молекулы P₄. Наличие N-H связи в PNP лиганде играет ключевую роль в процессе трансформации молекулы белого фосфора в зигзагообразную цепь и вносит значительный вклад в механизм реакции. На основании полученных данных предложен механизм трансформации молекулы белого фосфора в координационной сфере комплексов кобальта с PNP лигандами.

2.2. Функционализация полифосфорных лигандов, образованных при металлокомплексной активации молекулы белого фосфора

Если металлокомплексная активация молекулы белого фосфора является первым шагом на пути к синтезу важных фосфорорганических продуктов, то следующим шагом будет функционализация образующихся полифосфорных P_n фрагментов путем реакций с подходящими реагентами. В

ходе таких реакций образуются соединения, содержащие связи P-E, где E = элемент-неметалл. Несмотря на то, что активация P_4 получила относительно хорошее развитие в последние несколько десятилетий, последующая функционализация образующихся P_n продуктов оказалась необычайно сложной задачей. Поэтому каждый пример успешной функционализации полифосфорных соединений вносит вклад в развитие фундаментальной фосфорной химии.

В данной главе будут описаны подходы к функционализации полифосфорных соединений, образованных при активации белого фосфора в координационной сфере кобальта.

2.2.1. Функционализация полифосфорных лигандов с образованием новой связи P-P

При исследовании реакционной способности комплекса **4** была найдена интересная его особенность. Установлено, что добавление к раствору комплекса **4** органических оснований, таких как Et₃N или 'BuOK приводит к значительному изменению значений химических сдвигов сигналов, относящихся к ядрам P_5/P_8 и P_6/P_7 , в спектрах ЯМР ³¹P (Рисунок 20). Можно заметить, что химический сдвиг сигналов ядер P_5/P_8 сместился в область более низких полей, в то время как ядра P_6/P_7 резонируют в более сильных полях. Это говорит о том, что электронное окружение ядер P_6/P_7 в присутствии оснований становится более экранированным, а значит для них следует ожидать более выраженных нуклеофильных свойств.

Рисунок 20 – а) Спектр ЯМР ${}^{31}P{}^{1}H{}$ (161.9 МГц, CD₂Cl₂, 294 K) для комплекса 4; спектры ЯМР ${}^{31}P{}^{1}H{}$ (161.9 МГц, CH₂Cl₂, 294 K) реакционных смесей, содержащих комплекс 4 в присутствии Et₃N (б) или в присутствии 'BuOK (в).

Интересные результаты были получены при масс-спектрометрическом исследовании комплекса 4. В спектрах ESI-MS комплекса 4 регистрируются сигналы при m/z = 953.03 [(M-BF₄)⁺] в положительном режиме и сигнал m/z = 950.92 [(M-2H-BF₄)⁻] в отрицательном режиме, что указывает на лабильность связи N-H в условиях эксперимента (Рисунок 21).

Рисунок 21 – ESI-MS-спектры комплекса 4, зарегистрированные в положительном (верхний) и отрицательном (нижний) режимах.

Найдено, что взаимодействие комплекса **4** с хлордифенилфосфином Ph₂PCl в присутствии триэтиламина ведет к образованию комплекса [Co(Ph₂PNP(Ph₂)PPP(Ph₂)PPP(Ph₂)NPPh₂)] (**9**) (Схема 59а). ³¹P ЯМР-мониторинг реакции показал практически количественную конверсию реагентов. Кристаллизация из раствора $T\Gamma\Phi/CH_2Cl_2$ позволила выделить продукт в виде темно-красных кристаллов с выходом 66%.

Схема 59 – а) Функционализация комплекса 4 реакцией с Ph_2PCl в присутствии Et_3N ; б) разложение комплекса 1 в тех же условиях.

88

Молекулярная структура **9** демонстрирует внедрение группы PPh₂ между атомами P₆ и P₇ с образованием новых связей P₆-P₉ и P₇-P₉ (Рисунок 22). Таким образом, комплекс **9** — редкий пример функционализации молекулы белого фосфора, в котором все четыре атома фосфора σ-связаны с фосфорорганическим фрагментом.

Рисунок 22 – Молекулярная структура комплекса **9**. Показаны только *ипсо*-атомы углерода; остальные атомы углерода, атомы водорода и молекулы растворителя не показаны для ясности. Выделенные длины связей (Å) и углы (°): *P*₁-*N*₁ 1.596, *P*₂-*N*₁ 1.653, *P*₃-*N*₂ 1.598, *P*₄-*N*₂ 1.662, *P*₁-*P*₅ 2.201, *P*₃-*P*₈ 2.186, *P*₅-*P*₆ 2.173, *P*₇-*P*₈ 2.182, *P*₆-*P*₉ 2.169, *P*₇-*P*₉ 2.159, *Co*-*P*₂ 2.207, *Co*-*P*₄ 2.222, *Co*-*P*₅ 2.259, *Co*-*P*₆ 2.366, *Co*-*P*₇ 2.335, *Co*-*P*₈ 2.239, *P*₁-*N*₁-*P*₂ 118.08, *P*₃-*P*₄ 117.99.

Важно заметить, что в отсутствие основания реакция **4** с Ph₂PCl не протекает. Также интересно отметить, что попытки провести подобную реакцию с использованием комплекса **1** в качестве реагента были неуспешны и приводили к частичному разложению комплекса (³¹P ЯМР-мониторинг) (Схема 59б). Этот факт может говорить о том, что реакционная способность **4** по отношению к Ph₂PCl обусловлена наличием лабильных N-H связей.

Общий нейтральный заряд комплекса **9** говорит о том, что реакция протекает по необычному механизму. Действительно, введение дополнительного положительно заряженного фосфониевого фрагмента сопровождается депротонированием обеих связей N-H в фрагментах PNP.

Связи P_2 - N_1 и P_4 - N_2 в комплексе **9** (1.653 Å и 1.662 Å) короче соответствующих связей в **4** (1.719 Å и 1.718 Å). Связи P_1 - N_1 и P_3 - N_2 в комплексе **9** также стали короче (от 1.655 Å для **4** до 1.598 Å для **9**). Значения длин связей Р-N близки к значениям длин связей Р-N в ранее опубликованных координационных соединениях с анионным (Ph₂PNPPh₂)⁻ лигандом [121, 122].

Депротонирование N-H связей в комплексе 9 было также подтверждено методом ¹H ЯМР-спектроскопии, где было зафиксировано отсутствие сигнала, относящегося к N-H связи (Рисунок 23).

Рисунок 23 – ¹Н (400.1 MHz, 294 K, CD₂Cl₂) ЯМР-спектры комплексов **4** (а) и **9** (б); *CD₂Cl₂, #BuOH, °TГФ.

Склонность к депротонированию лиганда dppa была описана ранее для других комплексов триады железа [120–122]. По мнению авторов, в данных соединениях анионный лиганд (Ph₂PNPPh₂)⁻ существует в виде квазиаллильной формы, где отрицательный заряд делокализован вдоль PNP фрагмента. Для определения электронного строения комплекса **9** был проведен квантово-химический анализ его электронной и пространственной структуры. DFT-оптимизированная геометрия комплекса 9 хорошо воспроизводит все структурные особенности кристаллографически полученной структуры (Рисунок 24, Таблица 4).

Рисунок 24 – Кристаллографически определенная (a) и DFTоптимизированная (б) структуры комплекса 9.

Таблица 4 – Выбранные структурные параметры (длины связей в Å) комплекса 9.

Параметр	Молекулярная	DFT-оптимизированная
Параметр	структура	структура
Co–P ₂	2.222	2.235
Co–P ₄	2.207	2.238
Co–P ₅	2.239	2.279
Co–P ₈	2.259	2.283
Co–P ₆	2.335	2.403
Co–P ₇	2.366	2.389
$P_5 - P_6$	2.182	2.215
$P_8 - P_7$	2.173	2.218
$P_1 - N_1$	1.596	1.629
$P_2 - N_1$	1.662	1.689
$P_3 - N_2$	1.598	1.627
P_4-N_2	1.653	1.690

Анализ рассчитанных ЛНМО показал, что в комплексе 9 сохраняется степень окисления кобальта +3 (в наборе присутствуют три дважды занятые ЛНМО, соответствующие 3d-орбиталям Со) (Рисунок 25)⁴. Полученные

⁴ Квантово-химические расчеты выполнены д.х.н., проф. Зуевой Екатериной Михайловной

ЛНМО также указывают на отсутствие π-связи в фрагментах PNP (наличие двух НЭП для каждого атома азота).

Рисунок 25 – Выбранные дважды занятые ЛНМО комплекса **9**, полученные с использованием его кристаллографической геометрии.

Таким образом, в комплексе **9** реализуется уникальное распределение зарядов внутри лиганда, т.к. он содержит три sp^3 -гибридизованных положительно заряженных фосфониевых (P_1 , P_3 , P_9), четыре sp^3 -гибридизованных отрицательно заряженных фосфинидных (P_5 - P_8) и два sp^2 -

гибридизованных отрицательно заряженных аминидных (*N*₁, *N*₂) центра (Рисунок 26).

Рисунок 26 – Резонансная структура лиганда в комплексе 9.

³¹Р ЯМР-спектр комплекса **9** хорошо согласуется с кристаллической структурой и содержит пять групп сигналов в АА'ММ'РХХ'ZZ' спиновой системе (Рисунок 27). Присутствие P_9 Ph₂ группы сильно повлияло на химические сдвиги и мультиплетность сигналов, относящихся к P_5/P_8 и P_6/P_7 атомам, в сравнении с ³¹Р ЯМР-спектром для комплекса **4**. Высокое разрешение сигналов в спектре для соединения **9** позволило провести компьютерную симуляцию спектра для более точного определения констант спин-спинового взаимодействия (Таблица 5). Значения констант спинсинового взаимодействия ¹ J_{P-P} типичны для одинарной связи P-P.

Таблица 5 – Данные компьютерной симуляции ³¹Р{¹H} ЯМР-спектра для комплекса 9.

		<i>J</i> (Гц)								
ядро о (м.д.)	о (м.д.)	P1	P2	P3	P4	P5	P6	P7	P8	P9
P1	75.50									
P2	117.80	78.0								
P3	75.50	0.0	0.0							
P4	117.80	н/д	0.0	78.0						
P5	-30.27	349.2	н/д	н/д	н/д					
P6	-156.46	95.1	н/д	26.6	н/д	358.0				
P7	-156.46	26.6	н/д	95.1	н/д	н/д	0.0			
P8	-30.27	н/д	н/д	349.2	н/д	0.0	н/д	358.0		
P9	59.65	50.0	0.0	50.0	0.0	72.8	370.2	370.2	72.8	

Рисунок 27 – Экспериментальный (верхний) и симулированный (нижний) ${}^{31}P{}^{1}H$ спектры (161.9 МГц, CD_2Cl_2 , 294 К) комплекса 9.

2.2.2. Электрохимически индуцированная функционализация полифосфорных соединений с образованием новой связи Р-С

Полученный в середине 80-х годов прошлого века комплекс [Co(Ph₂PCH₂P(Ph)₂PPPPP(Ph)₂CH₂PPh₂)]BF₄ (1) привлек внимание исследователей перспективный объект дальнейшей как для функционализации полифосфорного лиганда, полученного при металлокомплексной активации белого фосфора, ввиду относительной открытости и стерической доступности тетрафосфорного фрагмента. Однако, несмотря на это, комплекс 1 оказался химически инертным по отношению к различным органическим (алкил-, арилгалогениды) и неорганическим (S₈, I₂) реагентам [43]. На данный момент известны лишь единичные примеры реакционной способности комплекса 1, описывающих взаимодействия с некоторыми комплексами переходных металлов [43,44] (Глава 1, Схема 16).

Электрохимия является удобным инструментом для управления реакционной способностью комплексов переходных металлов. Зачастую электрохимически восстановленные или окисленные формы комплексов оказываются химически более активными по отношению к различным субстратам. Поэтому с изучения протекания целью возможного индуцированных ЕС процессов электрохимически были проведены исследования электрохимических свойств комплексов 1 и 4 [123].

Исследования электрохимических свойств комплекса **1** проводились с использованием метода циклической вольтамперометрии (ЦВА) в ДМФА с использованием Bu₄NBF₄ в качестве фонового электролита. Циклическая вольтамперограмма (ЦВА-кривая) комплекса **1** (Рисунок 28 кривая *a*) имеет 3 пика необратимого восстановления C₁-C₃ с потенциалами пиков $E_p^{C1} = -1.65$ В, $E_p^{C2} = -2.17$ В и $E_p^{C3} = -2.40$ В соответственно, а также пик необратимого анодного окисления A₁ с потенциалом пика $E_p^{A1} = 0.36$ В (Таблица 6).

Электрохимические свойства алкилгалогенидов на настоящий момент достаточно хорошо изучены [124]. Электрохимическое восстановление таких соединений сопровождается образованием алкил-радикалов и высвобождением галогенид-анионов X^- (где X = Cl, Br, I). Сгенерированные таким образом алкил-радикалы обладают высокой реакционной способностью и способны функционализировать различные субстраты. В частности, данный подход был недавно применен В нашей научной группе ДЛЯ фосфора электрохимического метилирования черного материала, содержащего двумерные полифосфорные фрагменты [125]. Однако для молекулярной химии данный подход имеет свои ограничения: алкилрадикалы образуются в приэлектродном слое и склонны к димеризации с образованием продуктов гомосочетания, а также К дальнейшему восстановлению с образованием склонных к протонированию алкил-анионов. Поэтому для того, чтобы предотвратить нежелательные электродные добавляют зачастую В реакционную смесь процессы, специальные электрохимические медиаторы. На кривой б рисунка 28 приведена кривая ЦВА для иодметана, зарегистрированная в режиме анодной развертки потенциала в два цикла сканирования. Можно заметить, что в ходе первого сканирования в анодной области отсутствуют пики окисления. При потенциале пика C₁ ($E_n^{Cl} = -2.53$ В) происходит катодное восстановление CH₃I с образованием радикалов CH₃ и анионов I- (Таблица 6). Последние в дальнейшем подвергаются последовательному двухстадийному окислению

 $6I^- \rightarrow 2I_3^- + 4e$

 $2I_3^- \! \rightarrow 3I_2 + 2e$

при потенциалах анодных пиков A1 и A2 ($E_p^{Al} = -0.01$ и $E_p^{A2} = 0.36$ B) соответственно, что подтверждается присутствием на ЦВА-кривой пиков окисления при сканировании потенциала рабочего электрода в область анодных значений после предварительной катодной поляризации [126].

Рисунок 28 – ЦВА-кривые для комплекса 1 (5 × 10⁻³ M) (кривая а) и CH₃I (5 × 10⁻³ M) (кривая б) в среде ДМФА в присутствии Bu₄NBF₄ (0.1 M). Рабочий электрод – СУ, v = 100 мВ/с.

Таблица 6 – Потенциалы пиков* на ЦВА-кривых для комплекса 1 и CH₃I.

Соединение	Катодные	е пики <i>E_p</i> , В	Анодные	е пики <i>E</i> , B
Комплекс 1	C1	-1.65		
	C_2	-2.17	A_1	0.36
	C_3	-2.40		
CH ₃ I	C ₁	-2.53	A1	-0.01
			A_2	0.36

* ЦВА зарегистрированы без IR-компенсации, потенциалы приведены относительно электрода сравнения Ag/AgNO₃, 0.01 M в CH₃CN (E^0 (Fc/Fc+) = + 0.20 B).

Далее были проведены ЦВА исследования комплекса 1 в присутствии возрастающих количеств CH₃I (Рисунок 29). Морфология катодной ветви кривой изменяется незначительно в присутствии CH₃I, проявляясь в виде единственного пика восстановления при потенциале $E_p = -1.65$ В. Однако дальнейшая развертка потенциала в анодную область сопровождается существенным изменением морфологии ЦВА-кривой. В присутствии CH₃I на анодной ветви кривой ЦВА комплекса 1 появляются три пика окисления с потенциалами пиков $E_p = 0.12$ В, $E_p = 0.36$ В и $E_p = 0.74$ В. Появление этих свидетельствует о сигналов наличии В растворе иодид-анионов, образующихся в ходе реакции электрохимически восстановленных форм комплекса 1 с CH₃I. Важно заметить, что развертка потенциала в катодной области не потенциала лостигает значения восстановления CH₃I. следовательно, пики окисления иодид-анионов появляются вследствие протекания ЕС процесса. Это свидетельствует о медиаторном типе передачи электрона от восстановленной формы комплекса 1 к молекуле CH₃I, что в свою очередь приводит к образованию в растворе высокореакционоспособных высвобождению свободных метил-радикалов И иодид-анионов. Следовательно, при электрохимическом восстановлении комплекса 1 в CH₃I присутствии реакционной смеси создаются условия В ДЛЯ функционализации комплекса 1 реакцией с метил-радикалами. С целью определения продукта такого взаимодействия был проведен препаративный электролиз смеси, содержащей комплекс 1 и CH₃I.

Рисунок 29 – ЦВА-кривые для системы, содержащей комплекс 1 (5 × 10^{-3} M) в присутствии возрастающих количеств CH₃I (0 - 5 экв.) в среде ДМФА в присутствии Bu₄NBF₄ (0.1 M). Рабочий электрод – СУ, v = 100 мB/c.

Препаративный электролиз смеси в ДМФА, содержащей комплекс **1**, CH₃I (5 экв.) и Bu₄NBF₄ в качестве фонового электролита, проводился в потенциостатическом режиме при потенциале пика восстановления комплекса кобальта **1** ($E_p^{Cl} = -1.65$ В отн. Ag/0.01 M AgNO₃ в CH₃CN) в ячейке с разделением анодного и катодного пространств. В качестве катода применялся стеклоуглеродный электрод, в качестве анода – металлический кобальт.

Электролиз сопровождался изменением окраски раствора от темнокрасной до темно-коричневой. По завершении электролиза раствор из катодного пространства ячейки был сконцентрирован, промыт гексаном и высушен с выделением твердого коричневого порошка. Добавление EtOH к последнему привело выпадению осадка К светлого метиленбис(метилдифенилфосфоний) дииодида (Схема 60), который В дальнейшем удалось перекристаллизовать из раствора в ацетоне И охарактеризовать физическими методами анализа, включая рентгеноструктурный анализ (Рисунок 30). Другими продуктами реакции

99

являются фосфиды кобальта переменного состава, которые не удалось выделить в чистом виде. Важно заметить, что реакция сопровождается деметаллированием фосфорорганического соединения.

Схема 60 – Препаративное электровосстановление комплекса 1 в присутствии CH₃I.

Рисунок 30 – Молекулярная структура метиленбис(метилдифенилфосфоний) дииодида. Эллипсоиды теплового смещения показаны с 50% вероятностью. Атомы водорода и иодид-анионы не показаны. Ph-атомы углерода не подписаны.

Для комплекса [Co(Ph₂PNHP(Ph₂)PPPPP(Ph₂)NHPPh₂)]BF₄ (4) ЦВАкривая схожа с кривой для комплекса 1 и имеет один пик катодного восстановления с потенциалом $E_p = -1.75$ В, а также пик анодного окисления с потенциалом пика $E_p = 0.70$ В (Рисунок 31). Добавление возрастающих количеств CH₃I к раствору комплекса 4 приводит к значительному изменению морфологии ЦВА-кривой, характеризующийся значительным диффузионным шлейфом пика катодного восстановления, что выражается в виде двух уширенных пиков при потенциалах $E_p = -1.75$ и $E_p = -2.23$ В. Такое электрохимическое поведение может свидетельствовать о протекании двух параллельных процессов электрохимического восстановления. В отличие от ЦВА исследований комплекса 1, морфология анодной ветви ЦВА-кривой комплекса 4 не характеризуется появлением новых сигналов. К сожалению, препаративный электролиз смеси, содержащей комплекс 4 и CH₃I, не привел к протеканию целевой реакции с участием комплекса 4, как в случае с комплексом 1.

Рисунок 31 — Кривые ЦВА для системы, содержащей комплекс 4 (5 × 10^{-3} M) в присутствии возрастающих количеств CH₃I (0 - 5 экв.) в среде ДМФА в присутствии Bu₄NBF₄ (0.1 M). Рабочий электрод – CV, v = 100 мB/с.

Таким образом, была показана функционализация полифосфорного лиганда комплекса [Co(Ph₂PNHP(Ph₂)PPPPP(Ph₂)NHPPh₂)]BF₄ (**4**) путем реакции с Ph₂PCl в присутствии Et₃N. Продуктом такого взаимодействия является нейтральный комплекс [Co(Ph₂PNP(Ph₂)PPP(Ph₂)PPP(Ph₂)NPPh₂)] (**9**), содержащий уникальный P₉-лиганд, образующийся при внедрении фрагмента PPh₂ по центральной связи P-P лиганда. Реакция сопровождается депротонированием N-H связей. Для комплексов **1** и **4** проведены

исследования электрохимических свойств. Найдено, что электрохимическое восстановление комплекса **1** в присутствии CH₃I приводит к метилированному продукту — метиленбис(метилдифенилфосфоний) дииодида, образующегося в результате разрыва связей P-P полифосфорного лиганда и образования новых связей P-C. Также важно отметить, что реакция сопровождается процессом деметаллирования фосфорорганического продукта. Проведение подобных исследований с использованием комплекса **4** не привели к протеканию реакций с его участием.

3. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

3.1. Общая информация

Все эксперименты, связанные с подготовкой исходных реагентов, проведением синтезов и выделением продуктов, были выполнены в инертной атмосфере сухого азота с использованием перчаточного бокса или стандартной аппаратуры Шленка.

ДМФА очищали трехкратной вакуумной перегонкой с промежуточной сушкой над гидридом кальция и хранили в атмосфере азота. Очистка ТГФ проводилась перегонкой над натрием в присутствии небольшого количества бензофенона. Бутанол очищался перегонкой над магнием. CH₂Cl₂ очищался перегонкой Комплекс над гидридом кальция. [Co(Ph₂PCH₂P(Ph)₂PPPPP(Ph)₂CH₂PPh₂)]BF₄ (1) [43], N, Nбис(дифенилфосфино)амин (dppa) [111], N, Nбис(дифенилфосфино)метиламин (dppa^{Me}) [112] N.N-И бис(дифенилфосфино)анилин (dppa^{Ph}) [113] были синтезированы согласно описанным методикам. Коммерчески доступные реактивы: Co(BF₄)₂×6H₂O (99%, Sigma-Aldrich), 2-метоксибензиламин (98%, Sigma-Aldrich), хлордифенилфосфин (98%, Sigma-Aldrich) и иодметан (99%, Sigma-Aldrich) использовались без дополнительной очистки.

Белый фосфор хранился под слоем дистиллированной воды и непосредственно перед экспериментом промывался последовательно этиловым спиртом, ацетоном и диэтиловом эфиром с последующей осушкой в вакууме. 0.05 М раствор белого фосфора в ТГФ готовился растворением навески Р₄ в соответствующем объеме растворителя.

3.2. Методы и оборудование

Регистрация спектров ЯМР осуществлялась на ЯМР-спектрометре Bruker Avance III 400 при температуре 294К и частоте 400.13 (¹H), 100.6 (¹³C), 161.9 (³¹P) МГц. Значения химических сдвигов (δ) даны в м.д. и соотнесены ко внешним стандартам: тетраметилсилану (¹H, ¹³C{¹H}) и 85% фосфорной кислоте (³¹P, ³¹P{¹H}). Компьютерная симуляция спектров ЯМР ³¹P{¹H} проводилась с использованием программного обеспечения MestReNova [127]. Исходные химические сдвиги и константы спин-спинового взаимодействия были взяты из экспериментально полученного спектра.

ESI-MS анализ был проведен с использованием спектрометра AmazonX (Bruker Daltonics) с ионно-циклотронной ловушкой в положительном и отрицательном режимах с массовым распределением 100–2000 Да. Условия ESI-MS эксперимента были следующие: капиллярное напряжение -4.5 кВ (положительный режим), +4.5 кВ (отрицательный режим); поток азота 8 л×мин⁻¹, 250 °C. Раствор образца вводился шприцем с потоком 180 мкл×мин⁻¹.

Элементный анализ проводился с использованием CHNS анализатора Elementar vario MACRO cube.

Твердофазные ЭПР исследования проводились при 223 К с использованием спектрометра Elexsys E500, при 9.67 ГГц с контроллером температуры Bruker N2.

Данные монокристальной рентгеновской дифракции для соединений dppa^{MeOBn}, **4**, **8**, **9** и [CH₂(Ph₂MeP)₂]I₂ были получены с использованием дифрактометра Bruker D8 QUEST с детектором PHOTON II с использованием графитового монохроматического Mo-Ka ($\lambda = 0.71073$ Å) излучателя. Сбор и индексирование данных, определение и уточнение параметров элементарной ячейки, коррекция абсорбции, учет систематических ошибок и определение параметров пространственной группы кристалла выполнены посредством пакета программ APEX2 [128]. Учет поглощения проводился программой SADABS [129]. Структура кристаллов расшифрована и уточнена с использованием программ SHELX и SHELXL [130, 131]. Параметры атомного смещения для атомов (кроме водорода) уточнены анизотропно. Атомы водорода расположены геометрически и включены в уточнение по модели «наездника». Данные для комплекса **6** были получены с использованием дифрактометра Rigaku XtaLab Synergy S с детектором HyPix и излучателем Cu Ка (1.54184 Å) при температуре 100 К. Структура кристалла расшифрована и

уточнена с использованием программ SHELXT и SHELXL [131,132]. Параметры атомного смещения для атомов (кроме водорода) уточнены анизотропно. Атомы водорода расположены геометрически и включены в уточнение по модели «наездника».

Квантово-химический расчет локализованных натуральных молекулярных орбиталей (ЛНМО) был выполнен методом функционала плотности B3LYP [133, 134] с использованием полноэлектронного базисного набора сс-pVDZ [135, 136] с учетом влияния дисперсионных взаимодействий [137, 138] (вычислительная процедура B3LYP-D3(BJ)/сс-pVDZ). Изучение механизма реакции проводилось в рамках вычислительной B3LYP-D3(BJ)/LANL2DZ. Соответствие найденных структур исходного реагента, интермедиатов продукта реакции минимумам на поверхности И потенциальной энергии доказывалось отсутствием отрицательных значений Гессиана. собственных Найденные структуры переходных состояний подтверждались наличием одного отрицательного собственного значения Гессиана. Проверка принадлежности найденных переходных состояний изучаемому реакционному пути осуществлялась с помощью процедуры поиска внутренней координаты реакции (IRC). Все расчеты проводились с помощью программного пакета GAUSSIAN 09 [139].

В исследованиях методом циклической вольтамперометрии в качестве рабочего электрода использовали электроды из стеклоуглерода с площадью MM^2 . рабочей поверхности 7 Вольтамперограммы (ЦВА-кривые) регистрировали при включении электрохимической ячейки ПО трехэлектродной схеме. Регистрацию ЦВА-кривых осуществляли в ДМФА на фоне 0.1 М Ви₄NBF₄ и скорости линейной развертки потенциала 100 мВ/с при использовании потенциостата SPELEC UV-VIS Instrument (200-900 nm) (Metrohm, Швейцария). Электродом сравнения служила система Ag/0.01 М AgNO₃ в ацетонитриле (E^0 (Fc/Fc⁺) = +0.20 В). Все потенциалы в работе В приведены относительно ЭТОГО электрода сравнения. качестве вспомогательного электрода использовали Pt-проволоку диаметром 0.5 мм и длиной 20 мм. Измерения проводили в ячейке в атмосфере азота при комнатной температуре. При проведении экспериментов объем рабочего раствора был равен 5 мл, а концентрация субстрата составляла 5 × 10⁻³ М.

3.3. Методики экспериментов

N,*N*-бис(дифенилфосфино)(2-метоксибензил)амин (dppa^{MeOBn})

Раствор хлодифенилфосфина (22.0 ммоль, 4.0 мл, 4.85 г) в 10 мл ТГФ добавили к раствору 2-метоксибензиламина (10.5 ммоль, 1.37 мл, 1.44 г) и треэтиламина (30 ммоль, 4.16 мл, 3.03 г) в 65 мл ТГФ при 0° С. После перемешивания в течение 1 часа при 0 °С смесь медленно нагрели до комнатной температуры и оставили перемешиваться на ночь. Полученную смесь отфильтровали и отогнали растворитель под вакуумом. Продукт был выделен в виде белых кристаллов после промывки 40 мл EtOH с дальнейшей осушкой под вакуумом.

Выход: 4.66 г (88%).

Элементный анализ (%) рассчитано для C₃₂H₂₉NOP₂: C 76.03, H 5.78, N 2.77, P 12.25; Найдено C 75.03, H 5.78, N 2.77, P 12.49.

¹Н ЯМР (400.13 МГц, CD₃CN, 294 K): δ = 7.5-7.3 м.д. (м, 20H, 2PPh₂), 7.17 м.д. (тд, 1H, C¹¹-*H*, ³*J*_{HH} = 7.7 Гц, ⁴*J*_{HH}=1.6 Гц), 6.89 м.д. (д, 1H, C¹³-*H*, ³*J*_{HH} = 7.6 Гц), 6.85 м.д. (д, C¹⁰-*H*, 1H, ³*J*_{HH} = 8.4 Гц), 6.69 м.д. (т, 1H, C¹²-*H*, ³*J*_{HH} = 7.4 Гц), 4.48 м.д. (т, 2Н, С*H*₂, ³*J*_{PH} = 9.1 Гц), 3.73 м.д. (с, 3Н, ОС*H*₃) (Рисунок А1).

¹³С{¹H} ЯМР (100.6 МГц, CD₂Cl₂, 294 K): $\delta = 157.52$ м.д. (с, *C*⁹), 139.63 м.д. (д, *C*¹, ¹*J*_{CP} = 16 Гц), 133.05 м.д. (с, *C*²), 132.94 м.д. (с, *C*⁸), 132.83 м.д. (с, *C*⁶), 133.02 м.д. (с, *C*¹³), 128.61 м.д. (с, *C*¹¹), 128.04 м.д. (с, *C*⁴), 127.91 м.д. (т, *C*³, *C*⁵, ³*J*_{CP} = 3 Гц), 119.87 м.д. (с, *C*¹²), 109.91 м.д. (с, *C*¹⁰), 54.9 м.д. (с, OCH₃), 49.66 м.д. (т, *C*⁷, ²*J*_{CP} =13 Гц) (Рисунок А2).

³¹Р{¹H} ЯМР (161.9 МГц, CD₂Cl₂, 294 К): δ = 59.2 м.д. (с) (Рисунок АЗ).

[Co(Ph₂PNHP(Ph₂)PPPPP(Ph₂)NHPPh₂)]BF₄ (4)

Раствор Co(BF₄)₂×6H₂O (0.17 г, 0.5 ммоль) в 10 мл BuOH добавили к раствору *N*,*N*-бис(дифенилфосфино)амина (0.39 г, 1.0 ммоль) в 15 мл TГФ при комнатной температуре. Далее к полученной темно желтой смеси добавили раствор P₄ (0.074 г, 0.6 ммоль) в 12 мл TГФ. Смесь кипятили в течение 1 часа до тех пор, пока цвет не стал темно-красным. Получившийся раствор был сконцентрирован под вакуумом до начала выпадения осадка. Красные кристаллы сольвата (4×BuOH), содержащий 1 молекулу BuOH на 1 молекулу 4, выделили путем фильтрации. Образец, пригодный для монокристальной рентгеновской дифракции, был получен перекристаллизацией из раствора CH₂Cl₂/BuOH (10/1 по объему).

Выход: 0.47 г (84%).

Элементный анализ (%) рассчитано для C₄₈H₄₂CoN₂P₈BF₄×C₄H₉OH: C 56.04, H 4.70, N 2.5; найдено C 52.64, H 4.82, N 2.89. Низкие значения

элементного анализа для углерода были найдены в трех независимых образцах.

ESI-MS: *m/z* (%): 953.03 (100%) [(M–BF₄)⁺] (положительный режим); 950.92 (100%) [(M–BF₄–2H)⁻] (отрицательный режим).

¹Н ЯМР (400.13 МГц, CD₂Cl₂, 294 K): δ = 8.0-6.5 м.д. (м, 40H, 8Ph), 5.71 (уш. с, 2H, 2N-*H*) (Рисунок A4).

¹³С{¹H} ЯМР(100.6 МГц, CD₂Cl₂, 294 K): $\delta = 133.59$ м.д. (дд, C^1 , ¹ $J_{PC} = 15.0$ Гц, ³ $J_{PC} = 2.3$ Гц), 131.78 (м, C^5), 130.86 (д, C^2 , ² $J_{PC} = 14.7$ Гц), 129.20-129.80 (м, C^6 , C^4 , C^8), 127.97 (д, C^3 , ³ $J_{PC} = 9.65$ Гц), 127.61 (д, C^7 , ³ $J_{PC} = 10.4$ Гц) (Рисунок А5).

³¹P{¹H} ЯМР (161.9 МГц, CD₂Cl₂, 294 K): $\delta = 123.5$ -129.5 м.д. (м, 2P, P², P⁴), 73.9-68.7 м.д. (м, 2P, P¹, P³), -74.7...-80.7 м.д. (м, 2P, P⁵, P⁸), -87.1...-93.1 м.д. (м, 2P, P⁶, P⁷); ²J_{PP} = 129 Гц (P¹P², P³P⁴), ¹J_{PP} = 510 Гц (P¹P⁵, P³P⁸), ¹J_{PP} = 220 Гц (P⁵P⁶, P⁷P⁸) (Рисунок А6).

 $[Co(dppa^{Me})_{2}(\eta^{1}-P_{4})]BF_{4}(5)$

Раствор Co(BF₄)₂×6H₂O (0.17 г, 0.5 ммоль) в 10 мл BuOH добавили к раствору *N*,*N*-бис(дифенилфосфино)метиламина (0.4 г, 1 ммоль) в 15 мл ТГФ. Далее к смеси добавили раствор P₄ (0.074 г, 0.6 ммоль) в 12 мл ТГФ. Смесь кипятили в течение 1 часа до тех пор, пока цвет не стал темно-красным, и сконцентрировали под вакуумом. Сигналы ³¹P{¹H} ЯМР-спектра, относящиеся к образованному *in situ* комплексу [Co(dppa^{Me})₂(η¹-P₄)]BF₄ (**5**) следующие:

³¹P{¹H} ЯМР (161.9 МГц, ТГФ+ВиОН, 294 К): δ = 85.8 м.д. (уш. с, Р_X), -369.0 (уш. кв, Р_A), -485.6 м.д. (д, Р_M,); ¹J_{AM} = 234 Гц (Рисунок А7).
ESI-MS: m/z (%): 981.16 [(M–BF₄)⁺] (100%) (5), 857.31 [(M–BF₄–P₄)⁺] (100%).

 $[Co(dppa^{Ph})_2(\eta^1-P_4)]BF_4(6)$

Раствор Co(BF₄)₂×6H₂O (0.17 г, 0.5 ммоль) в 10 мл BuOH добавили к раствору *N*,*N*-бис(дифенилфосфино)анилина (0.46 г, 1.0 ммоль) в 15 мл ТГФ. Далее к смеси добавили раствор P₄ (0.074 г, 0.6 ммоль) в 12 мл ТГФ. Раствор перемешивался в течение 7 дней при комнатной температуре пока цвет не поменялся от темно-зеленого к темно-коричневому. Раствор сконцентрировали под вакуумом и хранили при 4 °C в течение 24 ч. Краснокоричневые кристаллы продукта выделили путем фильтрации.

Выход: 0.17 г (28%).

Элементный анализ (%) рассчитано для C₆₀H₅₀BCoF₄N₂P₈: C 60.43, H 4.23, N 2.35; найдено C 59.94, H 4.56, N 2.10.

ESI-MS: m/z (%): 981.30 [(M–BF₄–P₄)⁺] (100%).

³¹P{¹H} ЯМР (161.9 МГц, CD₃CN, 294 К): δ = 88.0 м.д. (уш. с, Р_X), -370.2 (уш. кв, Р_A), -488.6 м.д. (д, Р_M,); ¹J_{AM} = 235 Гц (Рисунок А8).

Важно заметить, что это соединение не стабильно и разлагается при повторном растворении в CD₃CN с высвобождением свободной молекулы P₄. Поэтому в спектрах ЯМР ³¹Р появляются сигналы с $\delta = 82.9$ м.д., относящиеся к атомам фосфора PNP лигандов исходного комплекса и $\delta = -527$ м.д., относящийся к свободной молекуле P₄. По этой причине адекватные спектры ¹³C и ¹H ЯМР не могут быть получены. Растворение комплекса в других дейтерированных растворителях (CD₂Cl₂, CDCl₃, ДМСО-d6) ведет к полному разложению комплекса.

 $[Co(dppa^{MeOBn})_2(\eta^1-P_4)]BF_4(7)$

Раствор Со(BF₄)₂×6H₂O (0.17 г, 0.5 ммоль) в 10 мл ВиOH добавили к раствору *N*,*N*-бис(дифенилфосфино)(2-метоксибензил)амина (0.51 г, 1.0 ммоль) в 15 мл ТГФ при комнатной температуре. Далее к смеси добавили раствор P₄ (0.074 г, 0.6 ммоль) в 12 мл ТГФ. Смесь кипятили в течение 1 часа до тех пор, пока цвет не стал темно-красным. Получившийся раствор был сконцентрирован под вакуумом и хранился при 4 °C в течение 7 дней. Продукт выделили в форме сольвата с одной молекулой BuOH (7×BuOH) в виде темнокрасного микрокристаллического порошка и высушили под вакуумом (10⁻⁶ бар).

Выход: 0.16 г (24%).

Элементный анализ (%) рассчитано для C₆₄H₅₈BCoF₄N₂O₂P₈×C₄H₉OH: C 60.28, H 5.06, N 2.07; найдено C 59.88, H 5.36, N 1.79.

ESI-MS: m/z (%): 1193.36 [(M–BF₄)⁺] (100%), 1069.35 [(M–BF₄–P₄)⁺] (100%).

³¹P{¹H} ЯМР (161.9 МГц, CD₃CN, 294 K): δ = 89.4 м.д. (уш. с, Р_X), -366.2 (уш. кв, Р_A), -477.5 м.д. (д, Р_M,); ¹J_{AM} = 237 Гц (Рисунок А9).

Важно заметить, что это соединение не стабильно и разлагается при повторном растворении в CD₃CN с высвобождением свободной молекулы P₄. Поэтому в спектрах ЯМР ³¹Р появляются сигналы с $\delta = 84.4$ м.д., относящиеся к атомам фосфора PNP лигандов исходного комплекса и $\delta = -527$ м.д., относящийся к свободной молекуле P₄. По этой причине адекватные спектры ¹³С и ¹Н ЯМР не могут быть получены. Растворение комплекса в других

дейтерированных растворителях (CD₂Cl₂, CDCl₃, ДМСО-d6) ведет к полному разложению комплекса.

[Co(dppa^{Ph})₂(CH₃CN)₂](BF₄)₂ (8)

К суспензии *N*,*N*-бис(дифенилфосфино)анилина (dppa^{Ph}) (0.092 г, 0.2 ммоль) в 5 мл CH₃CN добавили раствор Co(BF₄)₂×6H₂O (0.034 г, 0.1 ммоль) в 5 мл CH₃CN. Образовавшийся зеленый раствор перемешивали в течение 12 часов при комнатной температуре. Медленное концентрирование раствора в токе азота с последующей фильтрацией и сушкой под вакуумом (1×10⁻⁶ бар) позволило выделить зеленые кристаллы продукта. Выход 0.113 г. (91%).

ESI-MS. m/z (%): 490.72 (100%) [(Co(dppa^{Ph})₂)²⁺]

Элементный анализ (%): рассчитано для C₆₄H₅₆B₂CoF₈N₄P₄ C 62.11; H 4.56; N 4.53. Найдено C 60.91; H 4.85; N 4.42

[Co(Ph₂PNP(Ph₂)PPP(Ph₂)PPP(Ph₂)NPPh₂)] (9)

Раствор хлордифенилфосфина (0.06 мл, 0.33 ммоль) в 10 мл ТГФ добавили к раствору [Co(Ph₂PNHP(Ph₂)PPPPP(Ph₂)NHPPh₂)]BF₄ (0.33 ммоль, 0.346 г) и Et₃N (1.3 ммоль, 0.131 г, 0.018 мл) в 10 мл CH₂Cl₂. Смесь перемешивали в течение 12 часов при комнатной температуре и сконцентрировали под вакуумом примерно до половины начального объема. Далее смесь отфильтровали и сконцентрировали до 1 мл. Темно-красные кристаллы сольвата, содержащего 1 молекулу CH₂Cl₂ и 1 молекулу ТГФ на одну молекулу комплекса ($9 \times CH_2Cl_2 \times T\Gamma\Phi$), промыли ТГФ и высушили под вакуумом (10^{-6} бар). Образец, пригодный для монокристальной рентгеновской дифракции, был получен перекристаллизацией из раствора CH₂Cl₂.

Выход: 0.28 г (66%)

Элементный анализ (%): рассчитано для C₆₀H₅₀CoN₂P₉×CH₂Cl₂×C₄H₇O: С 60.39, Н 4.60, N 2.17; найдено С 60.16, Н 4.61, N 1.83.

ESI-MS: m/z (%): 1137.11 [(M+H)⁺](100%).

¹H NMR (400.13 МГц, CD₂Cl₂, 294 K): δ = 8.0-6.5 м.д. (м, 50H, 10Ph) (Рисунок А10).

¹³С{¹H} NMR (100.6 МГц, CD₂Cl₂, 294 К): δ = 126-132 м.д. (м, Ph) (Рисунок А11).

³¹P{¹H} ЯМР (161.9 МГц, CD₂Cl₂, 294 K): $\delta = 117.80$ м.д. (м, 2P, P², P⁴), 75.50 (ддддд, 2P, P¹, P³), 59.65 (тттт, 1P, P⁹), -30.27 (м, 2P, P⁵, P⁸), -156.46 (м, 2P, P⁶, P⁷); ¹J_{P-P} = 349.2 Гц (P¹P⁵, P³P⁸), ¹J_{PP} = 358.0 Гц (P⁵P⁶, P⁷P⁸), ¹J_{PP} = 370.2 Гц (P⁶P⁹, P⁷P⁹), ²J_{PP} = 78.0 Гц (P¹P², P³P⁴), ²J_{PP} = 95.1 Гц (P¹P⁶, P³P⁷), ²J_{PP} = 72.8 Гц (P⁵P⁹, P⁸P⁹), ³J_{PP} = 50.0 Гц (P¹P⁹, P³P⁹) (Рисунок A12).

Препаративный электролиз

Навеску комплекса 1 (0.104 г, 0.1 ммоль) растворили в 10 мл 0.1 М раствора Bu₄NBF₄. Полученный темно-красный раствор поместили в катодную область электрохимической ячейки с разделением и добавили CH₃I (0.5 ммоль, 0.031 мл). В анодную область ячейки добавили 10 мл 0.1 М раствора Bu₄NBF₄. В качестве катода использовался стеклоуглеродный электрод, в качестве анода – металлический кобальт. Электрохимическое восстановление проводили при потенциале E = -1.65 В (отн. Ag/0.01 M AgNO₃ в CH₃CN) в течение 40 минут при перемешивании. Наблюдали изменение окраски раствора из темно-красного в темно-коричневый. По окончании электролиза раствор из катодной области сконцентрировали в токе азота до ~1 мл. К получившейся вязкой жидкости добавили 25 мл гексана и перемешивали в течение 12 часов. Затем летучие компоненты были удалены под вакуумом. При добавлении к получившемуся твердому коричневому порошку 25 мл EtOH наблюдали выпадение светло-желтого осадка. Осадок отфильтровали высушили под вакуумом. Пригодные для РСА кристаллы были получены перекристаллизацией из ацетона.

Выход [(CH₃Ph₂P)₂CH₂]I₂ = 0.053Γ (39%).

¹Н ЯМР (400.13 МГц, ДМСО-d6, 294 К): δ = 7.75-7.25 м.д. (м, 20H, 4Ph), 5.36 (т, 2H, CH₂, ²*J*_{P-H} =17.1 Гц), 2.72 (д, 6H, 2CH₃, ²*J*_{P-H} =14.1 Гц);

¹³С{¹H} ЯМР (100.6 МГц, ДМСО-d₆, 294 K): δ = 136.6-128.6 (м, Ph), 17.3 (т, CH₂), 7.6 (д, CH₃);

³¹Р ЯМР (161.9 МГц, ДМСО- d_6 , 294 К): $\delta = 20.43$ (с).

ESI-MS. *m*/*z* (%): 200.5 [((CH₃Ph₂P)₂CH₂)²⁺].

Элементный анализ: рассчитано для C₂₇H₂₈I₂P₂ C 48.53; H 4.22; Найдено C 48.02; H 4.29.

ЗАКЛЮЧЕНИЕ

- 1. Исследована реакционная способность комплексов кобальта с PNP лигандами по отношению к молекуле белого фосфора Р₄. Впервые показано, что природа заместителя у атома азота в PNP лиганде фосфора. влияет на процесс активации белого значительно Использование *N*,*N*-бис(дифенилфосфино)амина (dppa) в качестве лиганда приводит к раскрытию тетраэдра P₄ с образованием комплекса $[Co(Ph_2PNHP(Ph_2)PPPPP(Ph_2)NHPPh_2)]BF_4$ (4), В то время как использование N,N-бис(дифенилфосфино)метиламина (dppa^{Me}), N,N- $(dppa^{Ph})$ бис(дифенилфосфино)анилина N.Nили бис(дифенилфосфино)(2-метоксибензил)амина (dppa^{MeOBn}) в качестве лиганда ведет к образованию комплексов $[Co(dppa^R)_2(\eta^1-P_4)]BF_4$ (5-7) с η¹-координированной интактной молекулой Р₄.
- Проведены исследования строения полученных продуктов активации белого фосфора с применением экспериментальных и теоретических методов анализа. Показано, что металлоцентр комплекса 4 претерпевает окисление Co(+1)-Co(+3) в ходе реакции с P₄, а тетраэдр белого фосфора раскрывается в анионный фрагмент P₄^{4.} с угловой конфигурацией. Сравнительным анализом строения комплексов [Co(dppa^{Ph})₂(η¹-P₄)]BF₄
 (6) и [Co(dppa^{Ph})₂(CH₃CN)₂](BF₄)₂
 (8) были выявлены основные структурные особенности комплексов и были оценены стерические, электронные и нековалентные факторы, приводящие к стабилизации тетрагонально-пирамидальной (для 6) и октаэдрической (для 8) кристаллических структур.
- 3. Предложен и квантово-химически обоснован механизм трансформации молекулы белого фосфора в координационной сфере комплексов кобальта, стабилизированных дифосфиновыми PNP лигандами. η^1 -Механизм себя образование комплекса включает с В координированной молекулой белого фосфора, дальнейшую изомеризацию и функционализацию тетрафосфорного лиганда путем

образования новых связей P-P с участием атомов фосфора вспомогательных дифосфиновых лигандов.

- 4. Разработаны новые подходы к функционализации полифосфорных лигандов, получаемых при металлокомплексной активации **P**₄. Экспериментально найдено, взаимодействие комплекса что [Co(Ph₂PNHP(Ph₂)PPPPP(Ph₂)NHPPh₂)]BF₄ (**4**) с дифенилхлорфосфином в основной среде приводит к образованию нового комплекса $[Co(Ph_2PNP(Ph_2)PPP(Ph_2)PPP(Ph_2)NPPh_2)]$ (9) с высоким выходом. Реакция сопровождается депротонированием связей N-H И тетрафосфорного функционализацией фрагмента лиганда путем внедрения группы PPh₂ по центральной связи P-P.
- 5. Экспериментально установлено, что электрохимическое восстановление [Co(Ph₂PCH₂P(Ph)₂PPPPP(Ph)₂CH₂PPh₂)]BF₄ комплекса (1) В присутствии иодметана является ЕС процессом с переносом электрона OT восстановленной формы комплекса 1 К молекуле CH₃I. Препаративное электровосстановление комплекса 1 в присутствии образованию иодметана приводит продукта метилирования к полифосфорного лиганда метиленбис(метилдифенилфосфоний) дииодида $[Ph_2P(CH_3)CH_2P(CH_3)Ph_2]I_2$, образующегося в результате разрыва связей Р-Р в полифосфорном лиганде и образования новых связей Р-С.

Перспективы дальнейшей разработки темы

Полученные в ходе выполнения диссертационной работы результаты, а именно разработанные синтетические подходы к получению полифосфорных соединений при металлокомплексной активации молекулы белого фосфора в координационной сфере кобальта, являются фундаментальной основой для дальнейшего направленного исследования реакционной способности P₄ по отношению к другим комплексам IX группы и разработке новых методов получения фосфорорганических соединений на основе белого фосфора.

СПИСОК СОКРАЩЕНИЙ

- ДМФА *N*,*N*-диметилформамид;
- ЛНМО локализованные натуральные молекулярные орбитали;
- НЭП неподеленная электронная пара;
- ПС переходное состояние;
- ТГФ тетрагидрофуран;
- ЦВА циклическая вольтамперометрия;
- ЭПР спектроскопия электронного парамагнитного резонанса;
- ЯМР спектроскопия ядерного магнитного резонанса;
- асас ацетилацетонат;
- Ar* 2,6-бензгидрил-4-изопропилфенил;
- Bn бензил;
- СОD 1,5-циклооктадиен;
- Ср циклопентадиенид анион;
- Ср''' 1,2,4-трис(*трет*-бутил)циклопентадиенид анион;
- Ср* пентаметилциклопентадиенид анион;
- Ср^{ВІG} пентакис(4-п-бутилфенил)циклопентадиенид анион;
- Су циклогексил;
- dba дибензилиденацетон;
- dbbpy 4,4'-ди-*трет*-бутил-2,2'-бипиридил;
- DFT теория функционала плотности;
- dippBIAN бис(2,6-диизопропилфенилимино)аценафтендиимин;
- dme диметоксиэтан;
- dppa *N*,*N*-бис(дифенилфосфино)амин;
- dppa^{Me} *N*,*N*-бис(дифенилфосфино)метиламин;
- dppa^{MeOBn} *N*,*N* бис(дифенилфосфино)(2-метоксибензил)амин;
- dppa^{Ph} *N*,*N* бис(дифенилфосфино)анилин;
- dppe 1,2-бис(дифенилфосфино)этан;

dppm — 1,1-бис(дифенилфосфино)метан;

ESI-MS — ионизация распылением в электрическом поле с массспектрометрией;

EXSY ЯМР — обменная спектроскопия ЯМР;

^{*i*}Pr₂Im — 1,3-диизопропилимидазолин-2-илиден;

Men — ментил — 5-метил-2-пропан-2-ил-циклогексил;

Mes — мезитил;

^{Mes}BIAN — бис(мезитилимино)аценафтендиимин;

nacnac — 2,2,4,4-тетракис(2,6-диизопропиламино)пентан-3-ид анион;

NP₃ — трис(2-дифенилфосфиноэтил)амин;

Nu — нуклеофил;

РНDI — бис(2,6-диизопропилфенил)фенантрен-9,10-диимин;

ру — пиридин;

Tol — толил;

TPPMS — натриевая соль (3-сульфонатофенил)дифенилфосфина;

triphos — 1,1,1-трис(дифенилфосфинометил)этана;

tu — тиомочевина;

VT ЯМР — ЯМР спектроскопия при варьировании температуры.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- Barton, D.H.R. Elemental white phosphorus as a radical trap: a new and general route to phosphonic acids / D.H.R. Barton, J. Zhu // J. Am. Chem. Soc. 1993. V. 115. № 5. P. 2071–2072.
- [2] Barton, D.H.R. The invention of radical reactions. Part 39. The reaction of white phosphorus with carbon-centered radicals. An improved procedure for the synthesis of phosphonic acids and further mechanistic insights / D.H.R. Barton, R.A. Vonder Embse // Tetrahedron 1998. V. 54. № 41. P. 12475–12496.
- [3] Cossairt, B.M. Radical synthesis of trialkyl, triaryl, trisilyl and tristannyl phosphines from P_4 / B.M. Cossairt, C.C. Cummins // New J. Chem. 2010. V. 34. No 8. P. 1533-1536.
- [4] Heinl, S. Selective Functionalization of P₄ by Metal-Mediated C-P Bond Formation / S. Heinl, S. Reisinger, C. Schwarzmaier, M. Bodensteiner, M.
 Scheer // Angew. Chem. Int. Ed.— 2014. — V. 53. — № 29. — P. 7639– 7642.
- [5] Ghosh, S.K. A direct route from white phosphorus and fluorous alkyl and aryl iodides to the corresponding trialkyl- and triarylphosphines / S.K.
 Ghosh, C.C. Cummins, J.A. Gladysz // Org. Chem. Front. 2018. V. 5.
 № 23. P. 3421–3429.
- [6] Lennert, U. Direct catalytic transformation of white phosphorus into arylphosphines and phosphonium salts / U. Lennert, P.B. Arockiam, V. Streitferdt, D.J. Scott, C. Rödl, R.M. Gschwind, R. Wolf // Nat. Catal. 2019. V. 2. № 12. P. 1101–1106.
- [7] Masuda, J.D. Carbene Activation of P₄ and Subsequent Derivatization / J.D.
 Masuda, W.W. Schoeller, B. Donnadieu, G. Bertrand // Angew. Chem. Int.
 Ed. 2007. V. 46. № 37. P. 7052–7055.
- [8] Masuda, J.D. NHC-Mediated Aggregation of P₄: Isolation of a P₁₂ Cluster /
 J.D. Masuda, W.W. Schoeller, B. Donnadieu, G. Bertrand // J. Am. Chem.

Soc. — 2007. — V. 129. — № 46. — P. 14180–14181.

- [9] Back, O. Nonmetal-Mediated Fragmentation of P₄: Isolation of P₁ and P₂
 Bis(carbene) Adducts / O. Back, G. Kuchenbeiser, B. Donnadieu, G.
 Bertrand // Angew. Chem. Int. Ed. 2009. V. 48. № 30. P. 5530–5533.
- [10] Martin, C.D. Exploring the reactivity of white phosphorus with electrophilic carbenes: Synthesis of a P₄ cage and P₈ clusters / C.D. Martin, C.M. Weinstein, C.E. Moore, A.L. Rheingold, G. Bertrand // Chem. Commun. 2013. V. 49. № 40. P. 4486–4488.
- [11] Dorsey, C.L. Isolation of a neutral P₈ cluster by [2+2] cycloaddition of a diphosphene facilitated by carbene activation of white phosphorus / C.L. Dorsey, B.M. Squires, T.W. Hudnall // Angew. Chem. Int. Ed. 2013. V. 52. № 16. P. 4462–4465.
- [12] Rottschäfer, D. Direct functionalization of white phosphorus with anionic dicarbenes and mesoionic carbenes: Facile access to 1,2,3-triphosphol-2-ides / D. Rottschäfer, S. Blomeyer, B. Neumann, H.G. Stammler, R.S. Ghadwal // Chem. Sci. 2019. V. 10. № 48. P. 11078–11085.
- [13] Scheer, M. P₄ activation by main group elements and compounds / M.
 Scheer, G. Balázs, A. Seitz // Chem. Rev. 2010. V. 110. № 7. P.
 4236–4256.
- [14] Giffin, N.A. Reactivity of white phosphorus with compounds of the p-block /
 N.A. Giffin, J.D. Masuda // Coord. Chem. Rev. 2011. V. 255. №
 11–12. P. 1342–1359.
- [15] Khan, S. Activation of phosphorus by group 14 elements in low oxidation states / S. Khan, S.S. Sen, H.W. Roesky // Chem. Commun. 2012. V. 48. № 16. P. 2169–2179.
- [16] Borger, J.E. Functionalization of P₄ through Direct P−C Bond Formation /
 J.E. Borger, A.W. Ehlers, J.C. Slootweg, K. Lammertsma // Chem. Eur. J. —
 2017. V. 23. № 49. P. 11738–11746.
- [17] Cossairt, B.M. Early-transition-metal-mediated activation and transformation

of white phosphorus / B.M. Cossairt, N.A. Piro, C.C. Cummins // Chem. Rev. — 2010. — V. 110. — № 7. — P. 4164–4177.

- [18] Caporali, M. P₄ activation by late-transition metal complexes / M. Caporali,
 L. Gonsalvi, A. Rossin, M. Peruzzini // Chem. Rev. 2010. V. 110. —
 № 7. P. 4178–4235.
- [19] Giusti, L. Coordination chemistry of elemental phosphorus / L. Giusti, V.R. Landaeta, M. Vanni, J.A. Kelly, R. Wolf, M. Caporali // Coord. Chem. Rev. 2021. V. 441. 213927.
- [20] Scherer, O.J. [(η⁵-P₅)Fe(η⁵-C₅Me₅)], a Pentaphosphaferrocene Derivative /
 O.J. Scherer, T. Brück // Angew. Chem., Int. Ed. Engl. 1987. V. 26. —
 № 1. P. 59–59.
- [21] Schmid, G. Die Verwendung von Elementarem Phosphor als Ligand in Eisencarbonylen / G. Schmid, H. -P Kempny Z. // Anorg. Allg. Chem. — 1977. — V. 432. — № 1. — P. 160–166.
- [22] Scheer, M. P₄-Liganden mit maximaler Elektronendonorfähigkeit / M.
 Scheer, M. Dargatz, K. Schenzel, P.G. Jones // J. Organomet. Chem. —
 1992. V. 435. № 1–2. P. 123–132.
- [23] de los Rios, I. Synthesis of Exceptionally Stable Iron and Rutheniumη1tetrahedro-Tetraphosphorus Complexes: Evidence for a Strong Temperature Dependence of M−P4 π Back Donation / I. de los Rios, J.-R. Hamon, P. Hamon, C. Lapinte, L. Toupet, A. Romerosa, M. Peruzzini // Angew. Chem. Int. Ed. — 2001. — V. 40. — № 20. — P. 3910–3912.
- [24] Di Vaira, M. Coordination and reactivity of white phosphorus and tetraphosphorus trisulphide in the presence of the fragment CpFe(dppe)
 [dppe = 1,2-bis(diphenylphosphino)ethane] / M. Di Vaira, M. Peruzzini, S.S. Costantini, P. Stoppioni // J. Organomet. Chem. 2010. V. 695. № 6. P. 816–820.
- [25] Mirabello, V. Solution and solid-state dynamics of metal-coordinated white phosphorus / V. Mirabello, M. Caporali, V. Gallo, L. Gonsalvi, D. Gudat, W. Frey, A. Ienco, M. Latronico, P. Mastrorilli, M. Peruzzini // Chem. Eur. J. —

2012. — V. 18. — № 36. — P. 11238–11250.

- [26] Riddlestone, I.M. From Phosphidic to Phosphonium? Umpolung of the P₄-Bonding Situation in [CpFe(CO)(L)(η¹-P₄)]⁺ Cations (L = CO or PPh₃) / I.M. Riddlestone, P. Weis, A. Martens, M. Schorpp, H. Scherer, I. Krossing // Chem. Eur. J. 2019. V. 25. № 45. P. 10546–10551.
- [27] Scherer, O.J. Eisen-Zweikernkomplexe mit unterschiedlichen P₄-Liganden /
 O.J. Scherer, G. Schwarz, G. Wolmershäuser // Z. Anorg. Allg. Chem. —
 1996. V. 622. № 6. P. 951–957.
- [28] Heinl, S. Activation of group 15 based cage compounds by $[Cp^{BIG}Fe(CO)_2]$ radicals / S. Heinl, M. Scheer // Chem. Sci. — 2014. — V. 5. — N_{2} 8. — P. 3221–3225.
- [29] Peruzzini, M. Reaction of [(PPh₃)₃RuCl₂] with white phosphorus: Synthesis of the first RuII complex featuring a tetrahedro-tetraphosphorus ligand / M. Peruzzini, S. Mañas, A. Romerosa, A. Vacca // Mendeleev Commun. 2000. V. 10. № 4. P. 134–135.
- [30] Di Vaira, M. Easy hydrolysis of white phosphorus coordinated to ruthenium / M. Di Vaira, P. Frediani, S.S. Costantini, M. Peruzzini, P. Stoppioni // Dalton Trans. — 2005. — № 13. — P. 2234–2236.
- [31] Di Vaira, M. Hydrolytic disproportionation of coordinated white phosphorus in [CpRu(dppe)(η1-P₄)]PF₆ [dppe = 1,2-bis(diphenylphosphino)ethane] / M. Di Vaira, M. Peruzzini, S. Seniori Costantini, P. Stoppioni // J. Organomet. Chem. 2006. V. 691. № 18. P. 3931–3937.
- [32] Caporali, M. Influence of highly basic phosphine ligand on the reactivity and hydrolysis of P₄ and P₄S₃ supported by ruthenium fragments / M. Caporali, F.D. Calvo, C. Bazzicalupi, S. Seniori Costantini, M. Peruzzini // J. Organomet. Chem. 2018. V. 859. P. 68–74.
- [33] Mirabello, V. Dynamic behaviour of Ru and Ru-Pt complexes containing tetrahedro-P₄ ligand / V. Mirabello, M. Caporali, V. Gallo, L. Gonsalvi, A. Ienco, M. Latronico, P. Mastrorilli, M. Peruzzini // Dalton Trans.— 2011. V. 40. № 38. P. 9668–9671.

- [34] Bispinghoff, M. Ruthenium mediated halogenation of white phosphorus: Synthesis and reactivity of the unprecedented P₄Cl₂ moiety / M. Bispinghoff, Z. Benk, H. Grützmacher, F.D. Calvo, M. Caporali, M. Peruzzini // Dalton Trans. — 2019. — V. 48. — № 11. — P. 3593–3600.
- [35] Caporali, M. Synthesis, characterization and hydrolysis of osmium tetraphosphorus complexes / M. Caporali, M. Di Vaira, M. Peruzzini, S.S. Costantini, P. Stoppioni, F. Zanobini // Eur. J. Inorg. Chem. 2010. № 1. P. 152–158.
- [36] Simon, G.L. Organometallic Pnicogen Complexes. VII. Synthesis, Structure and Bonding of the Cubane-Like Metal Cluster [Co₄(η⁵-C₅H₅)₄P₄]. The First Reported Organometallic Complex Containing a Naked Phosphorus Atom as a Ligand / G.L. Simon, L.F. Dahl // J. Am. Chem. Soc. 1973. V. 95. № 7. P. 2175–2183.
- [37] Di Vaira, M. Cyclo-Triphosphorus (δ-P₃) as a Ligand in Cobalt and Nickel Complexes with 1,1,1-Tris(diphenylphosphinomethyl)ethane. Formation and Structures / M. Di Vaira, C.A. Ghilardi, S. Midollini, L. Sacconi // J. Am. Chem. Soc. — 1978. — V. 100. — № 8. — P. 2550–2551.
- [38] Cecconi, F. Synthesis, characterization, and structure of the complex (η³-cyclo-triphosphorus)(tris(2-diphenylphosphinoethyl)amine)cobalt / F.
 Cecconi, P. Dapporto, S. Midollini, L. Sacconi // Inorg. Chem. 1978. V. 17. № 11. P. 3292–3294.
- [39] Di Vaira, M. Transition Metal Complexes withcyclo-Triphosphorus (η³-P₃) and tetrahedro-Tetraphosphorus (η¹-P₄) Ligands / M. Di Vaira, L. Sacconi // Angew. Chem., Int. Ed. Engl. 1982. V. 21. № 5. P. 330–342.
- [40] Di Vaira, M. cyclo-Triphosphorus and cyclo-triarsenic as ligands in "double sandwich" complexes of cobalt and nickel / M. Di Vaira, S. Midollini, L. Sacconi // J. Am. Chem. Soc. — 1979. — V. 101. — № 7. — P. 1757–1763.
- [41] Di Vaira, M. Polyhedron report number 19: Naked phosphorus atoms and units in transition-metal compounds / M. Di Vaira, P. Stoppioni, M. Peruzzini // Polyhedron 1987. V. 6. № 3. P. 351–382.

- [42] Cecconi, F. Opening of the P₄ molecule: preparation and crystal structure of a cobalt complex of an η⁴-tetraphosphabutadiene ligand / F. Cecconi, C.A. Ghilardi, S. Midollini, A. Orlandini // J. Am. Chem. Soc. 1984. V. 106. № 12. P. 3667–3668.
- [43] Cecconi, F. A tetraphosphorus chain as part of a P₈-containing ligand. Synthesis and properties of the . η⁴-phosphabutadiene cobalt complex
 [Co(Ph₂PCH₂P(Ph)₂P₄P(Ph)₂CH₂PPh₂)]BF₄ and of its carbonyl derivatives / F. Cecconi, C.A. Ghilardi, S. Midollini, A. Orlandini // Inorg. Chem. — 1986. — V. 25. — № 11. — P. 1766–1770.
- [44] Caporali, M. Heterobimetallic cooperation mediates the transformation of white phosphorus into zwitterionic catena-phosphonium(+)diphosphenide(-) ligands / M. Caporali, P. Barbaro, L. Gonsalvi, A. Ienco, D. Yakhvarov, M. Peruzzini // Angew. Chem. Int. Ed. 2008. V. 47. № 20. P. 3766–3768.
- [45] Dürr, S. Symmetrical P₄ cleavage at cobalt: Characterization of intermediates on the way from P₄ to coordinated P₂ units / S. Dürr, D. Ertler, U. Radius // Inorg. Chem. 2012. V. 51. № 6. P. 3904–3909.
- [46] Barr, M.E. Synthesis, stereophysical bonding features, and chemical-electrochemical reactivity of two dimetal-bridging diphosphide cobalt and iron complexes: Co₂(η⁵-C₅Me₅)₂(μ²-η²-P₂)₂ and Fe₂(η⁵-C₅Me₅)₂(μ²-η²-P₂)₂ / M.E. Barr, L.F. Dahl // Organometallics 1991. V. 10. № 12. P. 3991–3996.
- [47] Zarzycki, B. Symmetrical P₄ cleavage at cobalt half sandwich complexes [(η⁵-C₅H₅)Co(L)] (L = CO, NHC)-a computational case study on the mechanism of symmetrical P₄ degradation to P₂ ligands / B. Zarzycki, F. Matthias Bickelhaupt, U. Radius // Dalton Trans. 2013. V. 42. № 20. P. 7468–7481.
- [48] Prabusankar, G. P-P bond activation of P₄ tetrahedron by group 13 carbenoid and its bis molybdenum pentacarbonyl adduct / G. Prabusankar, A. Doddi, C. Gemel, M. Winter, R.A. Fischer // Inorg. Chem. — 2010. — V. 49. — № 17.

— P. 7976–7980.

- [49] Ziegler, C.G.P. Construction of alkyl-substituted pentaphosphido ligands in the coordination sphere of cobalt / C.G.P. Ziegler, T.M. Maier, S. Pelties, C. Taube, F. Hennersdorf, A.W. Ehlers, J.J. Weigand, R. Wolf // Chem. Sci. 2019. V. 10. № 5. P. 1302–1308.
- [50] Hoidn, C.M. [3+2] Fragmentation of a Pentaphosphido Ligand by Cyanide / C.M. Hoidn, T.M. Maier, K. Trabitsch, J.J. Weigand, R. Wolf // Angew. Chem. Int. Ed. 2019. V. 58. № 52. P. 18931–18936.
- [51] Hauer, S. Cobalt-Mediated [3+1] Fragmentation of White Phosphorus: Access to Acylcyanophosphanides / S. Hauer, T.M. Horsley Downie, G. Balázs, K. Schwedtmann, J.J. Weigand, R. Wolf // Angew. Chem. Int. Ed. — 2024. — e202317170.
- [52] Ginsberg, A.P. Rhodium complexes with the molecular unit P₄ as a ligand /
 A.P. Ginsberg, W.E. Lindsell // J. Am. Chem. Soc. 1971. V. 93. №
 8. P. 2082–2084.
- [53] Bianchini, C. Synthesis and crystal structure of two isomorphous rhodium and iridium complexes with cyclo-triphosphorus and 1,1,1,tris(diphenylphosphinomethyl)-ethane / C. Bianchini, C. Mealli, L. Sacconi // Inorg. Chim. Acta — 1979. — V. 37. — № 2. — P. 543–544.
- [54] Bianchini, C. Triple-Decker Sandwich Complexes of 4d and 5d Metals with cyclo-Triphosphorus as μ,η³-Ligand: Structural and Magnetic Properties / C. Bianchini, M. Di Vaira, A. Meli, L. Sacconi // Angew. Chem., Int. Ed. Engl. 1980. V. 19. № 5. P. 405–406.
- [55] Bianchini, C. "Triple-Decker" Sandwich Complexes of cyclo-Triphosphorus with 4d and 5d Metals / C. Bianchini, M. Di Vaira, A. Meli, L. Sacconi // J. Am. Chem. Soc. 1981. V. 103. № 6. P. 1448–1452.
- [56] Yakhvarov, D. A snapshot of P₄ tetrahedron opening: Rh- and Ir-mediated activation of white phosphorus / D. Yakhvarov, P. Barbaro, L. Gonsalvi, S.M. Carpio, S. Midollini, A. Orlandini, M. Peruzzini, O. Sinyashin, F. Zanobini // Angew. Chem. Int. Ed.— 2006. V. 45. № 25. P. 4182–

4185.

- [57] Caporali, M.The bimetallic activation of white phosphorus by trans[RhCl(CO)(dppm)]₂ results in a Tetrahedro-Rh₂P₂ Moiety / M. Caporali, L. Gonsalvi, V. Mirabello, A. Ienco, G. Manca, F. Zanobini, M. Peruzzini //
 Eur. J. Inorg. Chem. 2014. № 10. P. 1652–1659.
- [58] Dapporto, P. tetrahedro-Tetraphosphorus as Monodentate Ligand in a Nickel(0) Complex / P. Dapporto, S. Midollini, L. Sacconi // Angew. Chem., Int. Ed. Engl. — 1979. — V. 18. — № 6. — P. 469–469.
- [59] Di Vaira, M. Structural correlations and NMR properties of mononuclear cyclic triphosphorus complexes / M. Di Vaira, L. Sacconi, P. Stoppioni // J. Organomet. Chem. — 1983. — V. 250. — № 1. — P. 183–195.
- [60] Mädl, E. Unexpected Reactivity of [(η⁵-1,2,4-*t*Bu₃C₅H₂)Ni(η³-P₃)] towards Main Group Nucleophiles and by Reduction / E. Mädl, G. Balázs, E. V. Peresypkina, M. Scheer // Angew. Chem. Int. Ed. — 2016. — V. 55. — № 27. — P. 7702–7707.
- [61] Dapporto,P. Palladium and Platinum Complexes with cyclo-Triphosphorus and tetrabedro-Tetraphosphorus as Ligands / P. Dapporto, L. Sacconi, P. Stoppioni, F. Zanobini // Inorg. Chem. 1981. V. 20. № 11. P. 3834–3839.
- [62] Di Vaira, M. Formation of the novel P₆ chain ligand from two P₃ rings bound to metal ligand systems / M. Di Vaira, P. Stoppioni // Polyhedron 1994.
 V. 13. № 22. P. 3045–3051.
- [63] Caporali, M. Heterobimetallic Cooperation Mediates the Transformation of White Phosphorus into Zwitterionic catena-Phosphonium(+)diphosphenide(-) Ligands / M. Caporali, P. Barbaro, L. Gonsalvi, A. Ienco, D. Yakhvarov, M. Peruzzini // Angew. Chem. Int. Ed.— 2008. — V. 47. — № 20. — P. 3766–3768.
- [64] Caporali, M. NMR studies on the novel heterobimetallic complexes
 [M(dppm)(Ph₂PCH₂PPh₂PPPP){Pt(PPh₃)₂}]OTf (M = Rh, Ir) derived from the stepwise activation of white phosphorus / M. Caporali, P. Barbaro, S.

Bolaño, L. Gonsalvi, S.M. Carpioc, M. Peruzzini // Magn. Reson. Chem. — 2008. — V. 46. — P. — 120-125.

- [65] Scheer, M. Koordinationschemische Stabilisierung "nackter" Elemente der V. Hauptgruppe (außer Stickstoff) Synthese, Struktur und Bindung / M. Scheer, E. Herrmann // Zeitschrift Für Chemie 1990. V. 30. № 2. P. 41–55.
- [66] Scheer, M. P₄-liganden mit maximaler elektronendonorfähigkeit / M. Scheer,
 M. Dargatz, A. Rufińska // J. Organomet. Chem. 1992. V. 440. №
 3. P. 327–334.
- [67] Hoidn, C.M. Transition-Metal-Mediated Functionalization of White Phosphorus / C.M. Hoidn, D.J. Scott, R. Wolf // Chem. Eur. J. — 2021. — V. 27. — № 6. — P. 1886–1902.
- [68] Caporali, M. The first water-soluble tetraphosphorus ruthenium complex. Synthesis, characterization and kinetic study of its hydrolysis / M. Caporali, L. Gonsalvi, R. Kagirov, V. Mirabello, M. Peruzzini, O. Sinyashin, P. Stoppioni, D. Yakhvarov // J. Organomet. Chem. — 2012. — V. 714. — P. 67–73.
- [69] Barbaro, P. Hydrolysis of dinuclear ruthenium complexes $[{CpRu(PPh_3)_2}_2(\mu,\eta^{1:1}-L)]-[CF_3SO_3]_2 (L = P_4, P_4S_3): Simple access to metal$ $complexes of P_2H_4 and PH_2SH / P. Barbaro, M. Di Vaira, M. Peruzzini, S.S.$ Costantini, P. Stoppioni // Chem. Eur. J. — 2007. — V. 13. — No 23. — P.6682–6690.
- [70] Barbaro, P. Controlling the activation of white phosphorus: Formation of phosphorous acid and ruthenium-coordinated 1-hydroxytriphosphane by hydrolysis of doubly metalated P₄ / P. Barbaro, M. Di Vaira, M. Peruzzini, S. Seniori Costantini, P. Stoppioni // Angew. Chem. Int. Ed.— 2008. V. 47. — № 23. — P. 4425–4427.
- [71] Barbaro, P. Getting a clue to the hydrolytic activation of white phosphorus: The generation and stabilization of P(OH)₂PHPHPH(OH) at ruthenium centers / P. Barbaro, M. Di Vaira, M. Peruzzini, S.S. Costantini, P. Stoppioni

// Inorg. Chem. — 2009. — V. 48. — № 3. — P. 1091–1096.

- [72] Barbaro, P. Iodine activation of coordinated white phosphorus: Formation and transformation of 1,3-dihydride-2-iodidecyclotetraphosphane / P.
 Barbaro, C. Bazzicalupi, M. Peruzzini, S. Seniori Costantini, P. Stoppioni // Angew. Chem. Int. Ed.— 2012. V. 51. № 34. P. 8628–8631.
- [73] Кагиров, Р.М. Активация и трансформация молекулы белого фосфора под действием комплексов палладия (II) / Р.М. Кагиров, А.В. Волошин, И.К. Ризванов, О.Г. Синяшин, Д.Г. Яхваров // Изв. АН, сер. хим. 2010. №. 6. С. 1094
- [74] Пат. 2460687 Российская Федерация, МПК С01В 25/163 (2006.01).
 Способ получения фосфористой кислоты из белого фосфора / Д.Г.
 Яхваров, Р.М Кагиров, О.Г. Синяшин ; заявитель и патентообладатель
 ФГБУН Институт оргфнической и физической химии им А.Е. Арбузова
 Казанского научного центра Российской академии наук. №
 2011107373/05 ; заявл. 25.02.2011 ; опубл. 10.09.2012, Бюл 25
- [75] Kuchkaev, A.M. Hydrolysis of element (White) phosphorus under the action of heterometallic cubane-type cluster {Mo₃PdS₄} / A.M. Kuchkaev, N.Y. Shmelev, A.M. Kuchkaev, A. V. Sukhov, V.M. Babaev, K.R. Khayarov, A.L. Gushchin, M.N. Sokolov, O.G. Sinyashin, D.G. Yakhvarov // Molecules 2021. V. 26. № 3. 538.
- [76] Green, J.C. Phosphorus chemistry: reaction between White phosphorus and bis-π-cyclopentadienylmolybdenum dihydride forming a MoP₂H₂ system / J.C. Green, M.L.H. Green, G.E. Morris // J. Chem. Soc., Chem. Commun. 1974. № 6. P. 212–213.
- [77] Cannillo, E. The crystal and molecular structure of the novel molybdenum– phosphine complex (η-C₅H₅)₂MoP₂H₂ / E. Cannillo, A. Coda, K. Prout, J.-C. Daran // Acta. Crystallogr. B. Struct. Sci. Cryst. Eng. Mater.— 1977. V. 33. № 8. P. 2608–2611.
- [78] Peruzzini, M. Hydrogenation of white phosphorus to phosphane with rhodium and iridium trihydrides / M. Peruzzini, J.A. Ramirez, F. Vizza //

Angew. Chem. Int. Ed. — 1998. — V. 37. — № 16. — P. 2255–2257.

- [79] Barbaro, P. Rhodium-Mediated Functionalization of White Phosphorus: A Novel Formation of C-P Bonds / P. Barbaro, M. Peruzzini, J.A. Ramirez, F.
 Vizza // Organometallics — 1999. — V. 18. — № 21. — P. 4237–4240.
- [80] Barbaro, P. Activation and Functionalization of White Phosphorus at Rhodium: Experimental and Computational Analysis of the [(triphos)Rh(η¹:η²-P₄RR')]Y Complexes (triphos = MeC(CH₂PPh₂)₃; R = H, Alkyl, Aryl; R' = 2 Electrons, H, Me) / P. Barbaro, A. Ienco, C. Mealli, M. Peruzzini, O.J. Scherer, G. Schmitt, F. Vizza, G. Wolmershäuser // Chem. Eur. J. — 2003. — V. 9. — № 21. — P. 5195–5210.
- [81] Reichl, S. Pentaphosphaferrocene-mediated synthesis of asymmetric organo-phosphines starting from white phosphorus / S. Reichl, E. Mädl, F. Riedlberger, M. Piesch, G. Balázs, M. Seidl, M. Scheer // Nat. Commun. 2021. V. 12. № 1. P. 1–9.
- [82] Reichl, S. Novel Synthetic Route for (Parent) Phosphetanes, Phospholanes,
 Phosphinanes and Phosphepanes / S. Reichl, G. Balazs, M. Scheer // Chem.
 Sci. 2023. № 14. P. 3834–3838.
- [83] Marinetti, A. Synthesis and X-ray crystal structure of 1,2,3triphenylphosphirene / A. Marinetti, F. Mathey, J. Fischer, A. Mitschler // J. Chem. Soc., Chem. Commun. — 1984. — V. 23821. — № 1. — P. 45.
- [84] Krill, S. 2-Alkylidenephosphiranes / S. Krill, B. Wang, J. Hung, C.J. Horan,
 G.M. Gray, K. Lammertsma // J. Am. Chem. Soc. 1997. V. 119. № 36. P. 8432–8437.
- [85] van Eis, M.J. The First Free 7λ³-Phosphanorbornadiene / M.J. van Eis, H.
 Zappey, F.J.J. de Kanter, W.H. de Wolf, K. Lammertsma, F. Bickelhaupt // J.
 Am. Chem. Soc. 2000. V. 122. № 14. P. 3386–3390.
- [86] Marinetti, A. Carbonylation of a strained phosphorus-carbon bond.
 Conversion of phosphirene into 2-keto-1,2-dihydrophosphete complexes: an entry into the chemistry of the phosphorus analogs of unsaturated β-lactams / A. Marinetti, J. Fischer, F. Mathey // J. Am. Chem. Soc. 1985. V. 107.

— № 17. — P. 5001–5002.

- [87] Deschamps, B. ChemInform Abstract: Chemistry of 1-Chlorophosphirene Complexes: Decomplexation, Substitutions, and Reduction. / B. Deschamps,
 F. Mathey // ChemInform. — 1989. — V. 20. — № 4. — P. 1989.
- [88] Deschamps, E. Arylation and heteroarylation of the phosphole ring / E.
 Deschamps, F. Mathey // J. Org. Chem. 1990. V. 55. № 8. P.
 2494–2498.
- [89] De Vaumas, R. Use of prochiral phosphaalkene complexes in the synthesis of optically active phosphines / R. De Vaumas, A. Marinetti, L. Ricard, F. Mathey // J. Am. Chem. Soc. 1992. V. 114. № 1. P. 261–266.
- [90] Maigrot, N. Is There Any Electronic Delocalization Operative in cis-1,2-Dihydro-1, 2-diphosphetes? Structural Comparison of cis and trans-1,2-Dihydro-1,2- diphosphetes. / N. Maigrot, L. Ricard, C. Charrier, P. Le Goff, F. Mathey // Bull. Soc. chim. Fr.— 1992. — V. 1. — № 5. — P. 76–78.
- [91] Deschamps, B. A New Approach to 1-Chlorophosphirenes / B. Deschamps,
 F. Mathey // Synthesis 1995. V. 1995. № 08. P. 941–943.
- [92] Marinetti, A. Synthesis of Optically Active Phosphiranes and Their Use as Ligands in Rhodium(I) Complexes / A. Marinetti, F. Mathey, L. Ricard // Organometallics — 1993. — V. 12. — № 4. — P. 1207–1212.
- [93] Slootweg, J.C. Branched Phospha[7]triangulanes / J.C. Slootweg, M. Schakel, F.J.J. De Kanter, A.W. Ehlers, S.I. Kozhushkov, A. De Meijere, M. Lutz, A.L. Spek, K. Lammertsma // J. Am. Chem. Soc. 2004. V. 126. — № 10. — P. 3050–3051.
- [94] Aaron, H.S. Decomplexation studies of Mo(CO)₅L coordination compounds containing organophosphorus ligands. Determination of the absolute configuration of the [(-)-Me(EtO)(HO)P]Mo(CO)₂ complex / H.S. Aaron, D.I. Rossman // J. Org. Chem. 1987. V. 52. № 13. P. 2939–2941.
- [95] Van Assema, S.G.A. Decomplexation of phosphirane and phosphirene complexes / S.G.A. Van Assema, F.J.J. De Kanter, M. Schakel, K. Lammertsma // Organometallics — 2006. — V. 25. — № 22. — P. 5286–

5291.

- [96] Ho, F. Role of steric strain in the chemistry of phosphiranes / F. Ho, Y. Li, F. Mathey // Organometallics 2012. V. 31. № 23. P. 8456–8458.
- [97] Mercier, F. Thermal dimerization of 1-phenyl-3,4-dimethylphosphole. An access to 2,2-biphospholenes and complexes thereof / F. Mercier, F. Mathey, J. Fischer, J.H. Nelson // Inorg. Chem. 1985. V. 24. № 24. P. 4141–4149.
- [98] Solujic, L. Intramolecular [4+2] Diels-Alder cycloaddition reactions of phospholes with vinylphosphines promoted by nickel / L. Solujic, E.B. Milosavljevic, J.H. Nelson, N.W. Alcock, J. Fischer // Inorg. Chem. 1989. V. 28. № 18. P. 3453–3460.
- [99] Tran Huy, N.H. A new route to vinyl phosphorus derivatives by formal insertion of phosphinidenes into the carbon-chlorine bond of chloroalkenes / N.H. Tran Huy, F. Mathey // J. Org. Chem. 2000. V. 65. № 3. P. 652–654.
- [100] Deschamps, E. Stereochemistry and some synthetic uses of the heteroarylation of phospholes / E. Deschamps, L. Ricard, F. Mathey // Heteroat. Chem. 1991. V. 2. № 3. P. 377–383.
- [101] Yakhvarov, D.G. Electrochemical Decomplexation of Phosphine-Pentacarbonyltungsten Complexes: The Phosphole Case / D.G. Yakhvarov, Y.H. Budnikova, N.H.T. Huy, L. Ricard, F. Mathey // Organometallics — 2004. — V. 23. — № 8. — P. 1961–1964.
- [102] Mansell S.M. Catalytic applications of small bite-angle diphosphorus ligands with single-atom linkers / S.M. Mansell // Dalton Trans. 2017. V. 46.
 № 44. P. 15157–15174.
- [103] Cloete, N. Ethylene tri- and tetramerization: A steric parameter selectivity switch from X-ray crystallography and computational analysis / N. Cloete, H.G. Visser, I. Engelbrecht, M.J. Overett, W.F. Gabrielli, A. Roodt // Inorg. Chem. 2013. V. 52. № 5. P. 2268–2270.

[104] Alam, F. Chromium catalysts stabilized by alkylphosphanyl PNP ligands for

selective ethylene tri-/tetramerization / F. Alam, H. Fan, C. Dong, J. Zhang, J. Ma, Y. Chen, T. Jiang // J. Catal. — 2021. — V. 404. — P. 163–173.

- [105] Alferov, K.A. Chromium catalysts for selective ethylene oligomerization to 1-hexene and 1-octene: Recent results / K.A. Alferov, G.P. Belov, Y. Meng // Appl. Catal. A: Gen.— 2017. — V. 542. — P. 71–124.
- [106] Bekmukhamedov, G.E. Ni-based complexes in selective ethylene oligomerization processes / G.E. Bekmukhamedov, A.V. Sukhov, A.M. Kuchkaev, D.G. Yakhvarov // Catalysts – 2020. – V. 10. – №. 5. – 498.
- [107] Kathewad, N. Facile Buchwald-Hartwig coupling of sterically encumbered substrates effected by PNP ligands / N. Kathewad, M.C. Anagha, N. Parvin, S. Parambath, P. Parameswaran, S. Khan // Dalton Trans. 2019. V. 48. № 8. P. 2730–2734.
- [108] Vece, V. Bis-N,N-aminophosphine (PNP) crosslinked poly(p-tert-butyl styrene) particles: A new support for heterogeneous palladium catalysts for Suzuki coupling reactions / V. Vece, K.C. Szeto, M.O. Charlin, P. Rouge, A. De Mallmann, M. Taam, P.Y. Dugas, M. Lansalot, F. D'Agosto, M. Taoufik // Catal. Commun. 2019. V. 129. P. 105715.
- [109] Aydemir, M. Rhodium-catalyzed transfer hydrogenation with functionalized bis(phosphino)amine ligands / M. Aydemir, N. Meric, C. Kayan, F. Ok, A. Baysal // Inorg. Chim. Acta— 2013. — V. 398. — P. 1–10.
- [110] Ok, F. Novel half-sandwich η⁵-Cp*-rhodium(III) and η⁵-Cp*-ruthenium(II) complexes bearing bis(phosphino)amine ligands and their use in the transfer hydrogenation of aromatic ketones / F. Ok, M. Aydemir, F. Durap // Appl. Organomet. Chem. 2014. V. 28. № 1. P. 38–43.
- [111] Noeth, H. Amino-phosphane. VIII. Ueber ein Octaphenyltetraphosphornitridchlorid und ein Tetraphenyldiphosphin-Ndiphenylphosphino-imid / H. Noeth, L. Meinel // Z. Anorg. Allg. Chem. — 1967. — V. 349. — № 5–6. — P. 225–240.
- [112] Sekabunga, E.J. Coordination Chemistry of Silver(I) with the Nitrogen-Bridged Ligands $(C_6H_5)_2PN(H)P(C_6H_5)_2$ and $(C_6H_5)_2PN(CH_3)P(C_6H_5)_2$: The

Effect of Alkylating the Nitrogen Bridge on Ligand Bridging versus Chelating Behavior / E.J. Sekabunga, M.L. Smith, T.R. Webb, W.E. Hill // Inorg. Chem. — 2002. — V. 41. — № 5. — P. 1205–1214.

- [113] Eady, S.C. Highly functionalizable penta-coordinate iron hydrogen production catalysts with low overpotentials / S.C. Eady, T. Breault, L. Thompson, N. Lehnert // Dalton Trans. 2016. V. 45. № 3. P. 1138–1151.
- [114] Kuchkaev, A.M. PNP Ligands in Cobalt-Mediated Activation and Functionalization of White Phosphorus / A.M. Kuchkaev, A.M. Kuchkaev, K.R. Khayarov, E.M. Zueva, A.B. Dobrynin, D.R. Islamov, D.G. Yakhvarov // Angew. Chem. Int. Ed.— 2022. — V. 61. — № 47. — e202210973.
- [115] Caminade, A.M. Synthesis of di-, tri-, and polyphosphine and phosphene transition metal complexes / A.M. Caminade, J.P. Majoral, R. Mathieu // Chem. Rev. — 1991. — V. 91. — № 4. — P. 575–612.
- [116] Szynkiewicz, N. Symmetrical and unsymmetrical diphosphanes with diversified alkyl, aryl, and amino substituents / N. Szynkiewicz, Ł.
 Ponikiewski, R. Grubba // Dalton Trans. 2018. V. 47. № 47. P. 16885–16894.
- [117] Кучкаев, А.М. Структурные особенности комплексов
 [Co(dppa^{Ph})₂(CH₃CN)₂](BF₄)₂ и [Co(dppaPh)₂(η¹-P₄)]BF₄, где dppa^{Ph} N,N-бис(дифенилфосфино)анилин / А.М. Кучкаев, А.М. Кучкаев, А.С. Иванов, А.В. Сухов, А.Б. Добрынин, О.Г. Синяшин, Д.Г. Яхваров // Журнал Структурной Химии 2023. Т. 64. № 5. 110096.
- [118] Yakhvarov, D. Bimetallic activation of white phosphorus / D. Yakhvarov, M. Peruzzini, M. Caporali, L. Gonsalvi, S. Midollini, A. Orlandini, Y. Ganushevich, O. Sinyashin // Phosphorus Sulfur Silicon Relat. Elem.—
 2008. V. 183. № 2–3. P. 487–493.
- [119] Schoeller W.W. Computational Insight into the Rh-Mediated Activation of White Phosphorus / W.W. Schoeller // Inorg. Chem. — 2011. — V. 50. — № 1. — P. 22–29.

- [120] Frank, N. Metal-ligand cooperation in H₂ activation with iron complexes bearing hemilabile bis(diphenylphosphino)amine ligands / N. Frank, K. Hanau, R. Langer // Inorg. Chem. 2014. V. 53. № 20. P. 11335–11343.
- [121] Sushev, V.V. Nickel(II) and nickel(0) derivatives of bis(diphenylphosphino)amine: [N(PPh₂)₂]₂Ni, (Ph₃P)₂Ni[(Ph₂P)₂NH]. Synthesis, characterization, and some properties / V. V. Sushev, A.N. Kornev, Y. V. Fedotova, Y.A. Kursky, T.G. Mushtina, G.A. Abakumov, L.N. Zakharov, A.L. Rheingold // J. Organomet. Chem. 2003. V. 676. — № 1–2. — P. 89–93.
- [122] Dickie, D.A. Structures and CO₂ reactivity of zinc complexes of bis(diisopropyl-) and bis(diphenylphosphino)amines / D.A. Dickie, R.A. Kemp // Organometallics 2014. V. 33. № 22. P. 6511–6518.
- [123] Kuchkaev, A.M. Electrochemically Induced Phosphorus–Methyl Bond Formation Involving the Complex
 [Co(Ph₂PCH₂P(Ph)₂PPPPP(Ph)₂CH₂PPh₂)]BF₄ / A.M. Kuchkaev, A.M. Kuchkaev, A.V. Sukhov, A.S. Ivanov, Kh.R. Khayarov, A.B. Dobrynin, O.G. Sinyashin, D.G. Yakhvarov // Russ. J. Electrochem. — 2024. — V. 60. — № 2 — P. 129-134.
- [124] Savéant, J.-M. Electron transfer, bond breaking and bond formation / J.-M. Savéant // Adv. Phys. Org. Chem. — 2000. — V. 35. — P. 117–192.
- [125] Kuchkaev, A.M. In-Situ Electrochemical Exfoliation and Methylation of Black Phosphorus into Functionalized Phosphorene Nanosheets / A.M.
 Kuchkaev, A.M. Kuchkaev, A. V. Sukhov, S. V. Saparina, O.I. Gnezdilov, A.E. Klimovitskii, S.A. Ziganshina, I.R. Nizameev, I.P. Asanov, K.A.
 Brylev, O.G. Sinyashin, D.G. Yakhvarov // Int. J. Mol. Sci. — 2023. — V. 24. — № 4. — 3095.
- [126] Popov, A.I. Studies on the Chemistry of Halogen and of Polyhalides. XIII.
 Voltammetry of Iodine Species in Acetonitrile / A.I. Popov, D.H. Geske // J.
 Am. Chem. Soc. 1958. V. 80. № 6. P. 1340–1352.

- [127] MestReNova версия 12.0.0-20080, Mestrelab Research S.L., Сантьяго де Компостела, Испания, 2017
- [128] APEX2 (Version 2.1), SAINTPlus. Data Reduction and Correction Program (Version 7.31A, Bruker Advansed X-ray Solutions, BrukerAXS Inc., Madison, Wisconsin, USA, 2006.
- [129] Sheldrick, G.M. SADABS, Program for empirical X-ray absorption correction, Bruker-Nonius, 1990 - 2004.
- [130] Sheldrick G.M. A short history of SHELX / G.M. Sheldrick // Acta Crystallogr. A. — 2008. — V. 64. — № 1. — P. 112–122.
- [131] Sheldrick G.M. Crystal structure refinement with SHELXL / G.M. Sheldrick
 // Acta Crystallogr. C 2015. V. 71. № 1. P. 3–8.
- [132] Sheldrick G.M. SHELXT Integrated space-group and crystal-structure determination / G.M. Sheldrick // Acta Crystallogr. A. — 2015. — V. 71. — № 1. — P. 3–8.
- [133] Becke A.D. Density-functional thermochemistry. III. The role of exact exchange / A.D. Becke // J. Chem. Phys. — 1993. — V. 98. — № 7. — P. 5648–5652.
- [134] Stephens, P.J. Ab Initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields / P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch // J. Phys. Chem. 1994. V. 98. № 45. P. 11623–11627.
- [135] Dunning T.H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen / T.H. Dunning // J. Chem. Phys. 1989. V. 90. № 2. P. 1007–1023.
- [136] Woon, D.E. Gaussian basis sets for use in correlated molecular calculations.
 III. The atoms aluminum through argon / D.E. Woon, T.H. Dunning // J.
 Chem. Phys. 1993. V. 98. № 2. P. 1358–1371.
- [137] Grimme, S. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu / S. Grimme, J. Antony, S. Ehrlich, H. Krieg // J. Chem. Phys. 2010. V.

132. — № 15.

[138] Grimme, S. Effect of the damping function in dispersion corrected density functional theory / S. Grimme, S. Ehrlich, L. Goerigk // J. Comput. Chem. — 2011. — V. 32. — № 7. — P. 1456–1465.

[139] Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2013

Рисунок А1 – ¹Н ЯМР-спектр (400.1 MHz, 294 K, CD₃CN) dppa^{MeOBn}, $*CD_3CN$, $^{\circ}H_2O$.

Рисунок А2 – ${}^{13}C{}^{1}H$ ЯМР-спектр (100.6 MHz, 294 K, CD₂Cl₂) dppa^{MeOBn}, *CD₂Cl₂.

136

Рисунок $A3 - {}^{31}P{}^{1}H{}$ ЯМР-спектр (161.9 MHz, 294 K, CD_2Cl_2) dppa^{MeOBn}.

Рисунок А4 – ¹Н ЯМР-спектр (400.1 MHz, 294 K, CD₂Cl₂) of 4, *CD₂Cl₂, °BuOH.

Рисунок А5 – ¹³С{¹H} ЯМР-спектр (100.6 MHz, 294 K, CD₂Cl₂) комплекса 4, *CD₂Cl₂.

Рисунок Аб – ${}^{31}P{}^{1}H{}$ ЯМР-спектр (161.9 MHz, 294 K, CD₂Cl₂) комплекса 4, *неизвестное включение.

Рисунок А7 – ³¹P{¹H} ЯМР-спектр (161.9 МНz, 294 K, $T\Gamma\Phi$ +BuOH) реакционной смеси, содержащей комплекс 5.

Рисунок А8 – ³¹P{¹H} ЯМР-спектр (161.9 MHz, 294 K, CD₃CN) комплекса 6, *P₄, °P атомы PNP лиганда комплекса [Co(dppa^{Ph})₂]⁺.

Рисунок А9 – ³¹P{¹H} ЯМР-спектр (161.9 MHz, 294 K, CD₃CN) комплекса 7, *P₄, °P атомы PNP лиганда комплекса [Co(dppa^{MeOBn})₂]⁺

Рисунок А10 – ¹Н ЯМР-спектр (400.1 МНz, 294 K, CD₂Cl₂) комплекса 9, *CD₂Cl₂, CH₂Cl₂, °ТГФ.

Рисунок A11 – ¹³C{¹H} ЯМР-спектр (100.6 MHz, 294 K, CD₂Cl₂) комплекса 9, *CD₂Cl₂.

Рисунок A12 – ${}^{31}P{}^{1}H{}$ ЯМР-спектр (161.9 MHz, 294 K, CD₂Cl₂) комплекса 9, *неизвестное включение.

Таблица А1 – Схематичное изображение и DFT-оптимизированные структуры исходного комплекса, интермедиатов, переходных состояний (ПС) и продукта реакции (комплекс **4**), а также их абсолютные (G^{0}_{298}) и относительные (ΔG^{0}_{298}) значения свободной энергии Гиббса.

Схематичное изображение (из рисунка 19)	DFT-оптимизированная структура	G ⁰ 298, Хартри	ΔG ⁰ ₂₉₈ , ккал / моль
Р.::со::Р N [Co(dppa) ₂ (η ¹ -Р ₄)] ⁺ (тетрагонально-пирамидальный)		-2160.123793	0
РСоР NРN [Co(dppa) ₂ (η ¹ -Р ₄)] ⁺ (тригонально-бипирамидальный)		-2160.120029	2.36
P P N P N P N P N P		-2160.109357	9.06

Продолжение таблицы А1

Продолжение таблицы А1
Схематичное изображение (из рисунка 19)	DFT-оптимизированная структура	G ⁰ 298, Хартри	ΔG ⁰ 298, ккал / моль
		-2160.126648	-1.79
		-2160.172949	-30.85

Продолжение таблицы А1